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ABS TRACT

This thesis is concerned with the control of entry to queueing

systems. An M/M/l model with a single class of customers and an

infinite time horizon studied by Naor (1969) provides the starting

point for this work. Each customer receives a fixed reward for

0 service and pays a holding cost at a fixed rate per unit of time he

spends in the system. Each customer may choose to Join the system

or not. A self-optimizing customer decides whether or not to join

by acting to maximize his own expected net benefit. A social

optimizing customer decides by acting to maximize the gain rate of

the system, the sum of the expected net benefits per unit time of all

I arrivals. Socially optimal control of the model is provided by

establishing a balking point for the customers that is no greaterI than the balking point a self-optimizing customer would determine.

j aor's approach is compared with the semi-Markov decision process4

formulation of Yechiali (1971). The results for this first model

are extended to show that the gain rate can only increase as the

arrival rate of the customers increases while the social balking

point can only decrease as the arrival rate increases.

A semi-lMarkov approach is used to formulate an expanded model

with several classes of customers, each with its own reward and

holding cost rate. Socially optimal control of this model is shown

to be provided by establishing a balking point for each class that

is no greater than the balking point a memuber of the class would

determine if he acted to maximize his own expected net benefit.
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A semi-Markov approach is also used to extend the several class

model to include Erlang service times. A heuristic solution technique

based on policy iteration and a solution technique using mixed integer

programming are presented.

The several class models are applied to the problem of deter-

mining an optimal policy for controlling the entry of commercial

aircraft to the landing queue at the Greater Pittsburgh International

Airport. A socially optimal control policy is found and analyzed.

Finally, the semi-Markov approach is used to formulate three

other models:

1) A nonpreemptive priority model.

2) A class dependent service rate model.

3) A nonpreemptive priority model with class dependent

service rates.
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CH.APTER I

INTRODUCTI.ON

Until quite recently, queueing theory has been z'sed primarily

as a descriptive tool. In this mode, an existing or proposed queueing

system is "aloe to operate" and its behavior is described by one or

more measures such as expec-ad waiting time and expected queue length.

Currently, an increasing pori ion of the queueing literature is being

devoted to the use of queueing theory to control ard optimize the

o~peration i f a system. Here, queueing analyses are used to design a

system or to develop an operating policy to control its operation so

that certain standards are met. For instance, a policy might be soughtIV

to keep operpting costs below somae upper bound while maximizing

throughput of the queue. This more recent approach of designing or

controlling a queueing system based on an optimum operating policy is

adopted throughout this work. The policies sought are those which

maximize gain per unit time.1

1.1 Problem Statement

Suppose that customers from M homogeneous classes arrive at a

service facility with a single server. Th classes are homogeneous in

.in the sense that each customer in a particular class, m, faces the

same cost structure at the service facility, namely, a reward R m for

'While gain can be given a broad range of interpretation, it is
perhaps easiest to think of gain as financial gain, although the term
is not restricted to dollars.
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service and a cost Cm per unit time the customer spends in the system.

Suppose also that each customer may either join the system or not.

Many economic viewpoints or objectives can be used to make the Join or

balk decisions. Two viewpoints of interest are that of an individual

customer and that of the group of customers or society acting as a
whole.

The first viewpoint gives rise to the individual optimum

problem in which each arriving customer makes his own decision whether

or not to join the system so that his own expected net bene~it is

maximized. Arriving customers are assumed to be able to determine the

state of the system, e.g., the number of customers in the system. A

customer's expected net benefit for joining when i customers are Ina

the system is his reward R minus C times his expected time in theM m

system, given that i customers are in front of him. Unless otherwise

stated, the service discipline used in the models is first come, first

IJserved. A customer's net benefit for balking is zero.

The other viewpoint produces the social optimum problem where

the decision of whether or not to allow an arrival to join the system

is made by a single decision maker who seeka to maximize tie sum of the

expected net benefits per unit time of all arriving customers. One way

to view this decision uaker i3 to think of him as an administrator who

collects all rewards and pays all the costs for the customers who use

the system, and then diitributes the gains among all arrivals whether

or not they joined the system. While solution of tho socisl optimum

problem is the major goal, the solution of the indiviital. optimum

problem is also obtained and used to limit the search fcr the solution

to the social optimum prcblem.

Nai
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The solution to the social optimum problem is an optimum policy

(i.e.. a join or balk decision for each class of customers, for each

possible state of the system). Several assumptions about the arrival

distribution of the customers and the service time distribution of the

server are required to solve the problem in a straightforward manner.

These assumptions are noted in the outline of the dissertation and are

explained more fully in the various chapters.

For several of the models presented in this paper, optimal

control of the entry of customers into the system is shown to be

provided by a set o~f balking points n - (n 1, n2 s ... ' nm) , where

class m joins if the state of the system is less than n m. ror all the

mo-dals presented in this paper, the balking point for a self-optimizing

customer of class m is shown to be at least as large as that of

customers of class m acting in a socially optimal manner. Thus,

compared with socially optimal behavior, self-optimizing custý.mers

tend to overcongest the system.

The particular application to which the results obtained will be

applied is the landing queue of an airport. It should be noted,

however, that applications as diverse as deciding on the number of

skiers to allow at a ski resort on a holiday and determining the

number of terminals allowed to tie into a computer system can be molded

into queueing system entry control problems. ln the landing queue at

an airport, vartou& type. of commercial aircraft are the classes of

customers in the landing queue system. For each class, R m is a measure

of the gain when a class m aircraft lands. C mis the cost per unit

time of keeping an aircraft of class a in the landing queue, including

such costs as crew wages and fuel.
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Entry of aircraft into an airport's landing queue is currently

beir.g controlled in several manners for safety reasons. At all major

airports, the air traffic controllers maintain an upper bound on the

size of the landing queue. If the queue is full, arriving aircraft

are denied entry into the landing queue and are kept under the command

* of controllers in another air traffic sector. Also, at certain air-

ports designated as high density traffic airports, the Federal Aviation

Administration (FAA) limits the number of instrument flight r'ule (IFR)

operations (take of fs and landings) per hour allowed during peak

traffic periods. These limits which are set by negotiation within the

industry are given in Table 1.1. It is not necessary that aircraft in

flight which are not admitted to the landing queue be forced to land

elsewhere. In practice, they could wait if they choose. The model,

however, is useful in determining the capacity of an airport landing

queue from an economic viewpoint. Thus, the entry of aircraft into the

landing queue is controlled in the model for the purposes of defining

an economical workload xior the airport or, more appropriately, an

economical airport for the workload. The former can be accomplished

by schedule modifications, the latter by airport design.

TABLE 1.1

FAA Limits for High Density Traffic Airports
IYR Operations Per Hour [FAA (1974)]

Airport

Class of Wash.
User JFK La Guardia Newark O'Hare National

Air Carrier 70 46 40 115 40

Air Taxi 5 6 10 10 8

Other 5 6 10 10 12
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The models developed in the first few chapters of this paper will

be used to determine the capacity of the system (from an economic

viewpoint). Since the aircraft are divided into several classes, it

is possible that the capacity of the system may vary with the class of

an arrival since, for certain states of the system, the administrator

may admit members of some classes but not of others. When a decision

concerning the direction the development of a model is to take is made,

the appropriateness of the direction to the landing queue application

is the criterion on which the choice is based.

1.2 Outline of the Dissertation

Following this chapter, Chapter II presents a literature survey

of selected works in the area of control of entry to queues. A few

works on the control of the server in a queueing system and other

general topics that serve as background for this work are also included.

Two of these topics are air traffic control and the estimation of theI

parameters of a probability distribution function. As indicated in the

f low diagram for this dissertation, Figure 1.1, the flow of the

dissertation is not interrupted by skipping Chapter II.

Model I, the simplest model used in this study, is presented in

Chapter III. A single class of customers whose arrival forms a

Poisson stream to a single sirver with exponentially distributed

service times is modeled. Thus, this model is an M/M/l/n queueing

system where the capacity of the system, n, is the decision variable.

The capacity of the system, n, is also referred to as the balking

point Df the customers; that is, if n (or more) customers are in the

system, an arrival balks at the opportunity to join.
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Model I has been solved previously by Naor (1969) and Yechiali

(1971) for the individual and social optimum values of n. Naor

developed his results using algebra and the properties of the model,

while Yechiali ieveloped his results by treating the problem as a

semi-Markov decision process. Chapter III compares the work of" the

two authors and extends it somewhat. A few sidelights such as tolls

(which both authors studied) are examined as one means of implementing

the solution to the social optimum problem. The toll charged to a

customer who joins the system alters his net benefit so that self-

optimizing customers find it desirable to join the system only when a

social optimizing administrator would have let them join.

In Chapter IV, M classes of customers are considered. Each

class m has its own reward for service Rm, cost per unit time in the

system Cm, and mean arrival rate X , but all have the same service

rate U. The work of Naor (1969) and Yechiali (1971) is extended to

this model. In particular, the form of the optimal policy carries over

to this new model, Model II. The decision variable in this model is a

policy, a set of join or balk decisions for each class of customers,

for each possible state of the system. Recall that the number of

customers in the system is the state of the system. The balking point

of Model I now becomes a vector n of balking points for each class.

This implies that some classes of customers may receive preferential

treatment in the operation of the system. lolicy iteration and linear

programming solution techniques are presented for the semi-Markov

decision process formulation of the problem.

The service time distribution of the M class model is generalized

from an exponential to an Erlang distribution in Chapter V. This change

...-- - - .. ...... . ~
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allows more flexibility in modelV*.ng the service time ditstributiorn of an

actual system. Again, the model. is structured as a semi-Markov

decision process. One solution method developed, based on policy

iteration, is easy to implement but does not guarantee an optimal

solution. It assumes that the optimal solution is again a vector of

balking points and performs a limited search for a good solution. A

second method permits an exhaustive search of all possible policies

through a mixed integer programing formulation.

As indicated in Figure 1.1, Chapters III through V cover the

three major models developed in this dissertation. Model II and the

Erlang model, Model III, are applied to a sample airport landing queue

problem in Chapter VI. Airline data, FAA data, and data taken at the

Greater Pittsburgh International Airport and Washington National

Airport are used in Chapter VI to estimate the parameters required for

the models. The models are then used to determine how entry to the

landing queue should be controlled to maximize the social optimum

objective function. The sensitivity of the results to the input

parameters is also examined.

In Chapter VII, three variations are developed for Model II.

First, the service discipline is changed from first come, first served

to a nonpreemptive priority service discipline. The second variation

expands the flexibility of the model by allowing different mean service

rates for each. class oi. customers. The last variation combines the

first two.

A summary of the entire dissertation and the conclusions reached

is presented in Chapter VIII along with a list of potential uses for
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the models developed in the earlier chapters. Suggested areas for

future research are also presented.

There are four appendices to this paper. A glossary of the

notations used in the paper is presented in Appendix A to facilitate

reading the more mathematical sections of this dissertation. Appendix

B contains procfs of some of the work of Naor (1969) and an example

problem solved using his work. A brief introduction to eemi-Markov

decision processas and policy iteration along with an example problem

illustrating the use of policy iteration comprise Appendix C.

Appendix D is a listing and user's guide for a computer program that

solves Models I, II, and 11I.

If! -

___________________________.__.
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CHAPTER II

LITERATURE SURVEY

This chapter is a survey of selected works that influenced the

writing of this paper. The works are divided into three areas: 1)

control of arrivals, 2) control of server, and 3) general. A short

summary of the papers in each group is presented in, alphabetical

order by author's name.

2.1 Control of Arrivals

Balachandran and Schaefer (1975) examine an M/G/l queueing model

with several classes of customers. Each class has its own reward for

service,' cost per unit time in the system, mean service rate, and mean

arrival rate which the class adjusts based on expected waiting time.
The individual optimum policy allows the service facility to be

dominated by a single class. The social optimum also admits only one

class, but it may not be the same class as the individual optimum.

Various techniques are explored for diversifying access to the facility.

Balachandran and Schaefer (1976) consider an M/M/l queueing model

with K classes of customers where each class adjusts its own arrival '1
rate based on average waiting time in the queue. Each customer of

class i receives a reward S for service and loses vi for each unit of

time spend in the system. If A0 is the optimal aggregate arrival rate,

the average waiting time is W - 1/(p - A0 ) . The service facility is

used only by those classes for which gi = v i/M - A0) . The authors

introduce admission prices to equalize the attractiveness of the

facility among the classes.

4



Balachandran and Tilt (undated) consider decision making in

quLueing systems with customers given the choice of 1) joining, 2)

balking, or 3) choosing a priority through payment made on arrival.

Several models are examined from the standpoint of a noncooperative

n person game. One of the models treated yields an individual opttmum

for the Gu/M/s/n queue which is analogous to that obtained by Yechiali

(1972).

Edelson and Hildebrand (1975) reexamine the work of Naor (1969)

and extend it to several classes of customers. However, the authors

are interested in the relationship between the social optimum and the

revenue maximizer's optimum. They first examine conditions under which

the two are the same. Then, they examine a generalized model which

includes several classes of customers, each with its own reward and

cost par unit time in the system. They give a computational technique

for finding the expected number of each class of customers in the

system. In addition, they show that for the generalized -ase, the

revenue maximizer's optimum balking point is not necessarily leis than

the social optimum (which it was for Naor's model).

Emmons (1972) considers an M/M/s queueing system \ith the

following cost structure:

a) A fixed running cost rate.

b) An expected revenue per customer, r.

c) An overtime running cost rate called K.

The system is run for a finite length of time with no customern

admitted after closing. A policy of admitting customers as a function

of number in the system and time to closing is sought which maximizes

the operator's total expected profit. The optimal policy admits

7i
I 4.

• '-: ..... '•....... t_ • .... ...... /L:_.••_=•,. t: .... ........................................................ ,..........-....,......,....I#.;,.•:•?



12

customers only if the number in the system, i, is such that
fl) W i < W2t , where fl W and f2(t) are giveý.:,. If pi is the
service rate and r > K/(cl), then2 -W , so t.at customers are

always admitted when f (t) or more are in the system. This rule can

be transformed into an optimal rejection time rule. For r < K/(cj),

f 2 (t) #W and the rule cannot be transformed into an optimal rejection

time rule.

Harrison (1975) studies an M/G/il queueing system with K classes

of customers. Each class has its own arrival rate, reward for service,

holding cost, and service time distribution function. All arrivals are

allowed to join the queue, but an administrator decides at the comple-

tion of each service which class, if any, to adw next to service.

The objective of the administrator is to maximize the sum of L..e dis-

counted net benefits of all customers in the system. A nonpreemptive

priority discipline (that may ignore several classes) is shown to be

optimal.

Knudsen (1972) considers an M/M/s/n queueing system. He

generalizes the work of Naor (1969) to s servers and to a nonlinear

waiting cost function. The author shows that if the net benefit to

ecch arriving customer is a decreasing concave function of the number

in the system, then Naor's results hold; that is, the revenue maximiz-

erts optimum balking point is less than or equal to the social optimum

which is in turn less than or equal to the individual optimum. The

author also discusses the shadow price aspect of the tolls charged to

customers to get them to act in a socially optimal manner. Finally,
he discusses the difficulties of pricing resources in a stochastic

situation.

ILI
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Lippman and Stidham (1977) examine a queueing system with an

arrival rate X and a service rate pithat is a nondecreasing, concave,

bounded above function of i, the number in the system. Typically, the

varible Anaccpte cutomr jinsthequeue and incurs a waiting

costof pe unt tme utilhe epats.The system may either be

Control of the system is exercised to maximize expected discounted net

benefits over an infinite or finite horizon. The paper compares

individual and social optima and shows that regardless of system state,

remaining horizon, or discount rate, a customer left to his own devicesI

will enter the system whenever the social optimum calls for him 60

enter. In addition, the customer may enter when the social optimum L
calls for him to balk. The authors claim that this discrepancy is

acaused by the failure of an individual customer to consider the short-

f all in benefits to later arriving customers caused by his joining the

queue. The paper also examines the behavior o" socially and individ-

ually optimal policies and returns as functions of i, n, and the

discount rate. Finally, the paper discusses tolls that should be

charged to get individuals to act in a socially optimal manner.I

cusomes tat avethesame cost. of waiting but different rewards for

sevc. edveosatoll to charge all customers to reduce theI

arrial ateso hatsocial benefit is maximized. In other words, the

reduction in waiting cost due to the smaller arrival rate more than

of fsets the loss in benefits of service to the customers as a whole.



14

Miller (1969) examines an M/M/s/s queueing system with K

classes of customers. Each class has its own reward for service and

arrival rate, but all classes have the same service rate. When a

CU.-aLOLer arrives, a decision is made v;hether or not to serve him. If

the, decision is made not to serve, the customer departs; thus, there

is no queue and no preemption. The objective of the paper is to find

the admittance policy which maximizes the average value of rewards over

an infinite planning horizon. W-hen the system is in state J, j servers

are free and a policy such as serve customers of classes {l, 2, 31 may

be chosen. The problem is formulate.4 as a semi-Markov process and

policy iteration is used to solve for an optimal policy. The paper

also describes two heuristic methods for examining a generalized

problem that allows each class to have its own general service time

distribution.

Minc and Ohno (1971) consider an M/G/l queueing system in which

the number of customers in the system is unavailable or too expensive

to maintain. Arriving customers are accepted during the time interval

(t , t'), starting time to rejection time, and rejected with compensa-o

tion after time t'. The server runs at a cost rate r during normal

hours, (tog T), where T is closing time (note that t < t' - T). The

server runs at increased rate r1 after T (overtime) and at reduced

rate r' if he becomes idle after t' (goes home). The paper finds the
0

rejection time that minimizes total expected cost.

Naor (1969) examines an M/M/l queueing system in which customers

receive a reward R for service and pay a cost of C per unit time in the

system. The arrival rate is X and the service rate is is. Each arrival

may choose either to join the system or not. Three types of objective

" %.L "~- Ž ... - , ........ ".7 . .. .. .. ..... ... i, ......"'.: . "" " " ": "'"t ~ "~ ... .. ...4 ...... i ' .... .I rt...... ' •.... . -L
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functions are considered. In the first, the individual optimum

problem, each customer seeks to maximize his own expected net gain.

It is optimal to balk when n customers are in the system, where
s

nS is the greatest integer in (Rii/C). This is simply an M/M/I/ns

system. The second optimization considers the collective good of all

arrivals given by the sum of their expected net benefits per unit time.
<

n w n is now the maximum number allowed in the system. Reduction to
0 0

a can be done either by administrative rule or by levying a toll on

entering customers to reduce n to n . The third optimization maxi-
< <

mizes the revenue of the toll collecting agency. n - n - n5 is the

maximum number allowed in the system. Thus, if left on its own, the

toll collecting agency levies tolls that are too high for the social

good.

Prabhu (1974) considers the problem of finding an optimal

stopping time for an M/G/l queueing system with a constant arrival

rate. The stopping time is chosen to maximize expected discounted

profit when the cost structure is as follows:

a) A revenue per unit time.

b) An operating cost per unit time in (0, t ) where t is0 0

the stopping time.

c) An operating cost rate in (t, O).

Finding the optimal stopping time is based on an infinitesimal look-

ahead rule which can be described as follows. Suppose the system has

been operating to time t and a profit f(t, W t) has been made, where Wt

is the remaining workload. It is profitable to continue the operation

up to time t + h if E{f(t + h, Wt + h)} > f(t, Wt).

* * ~ *..
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Stidham (1978) considers the problem of accepting or rejecting

arrivals at a GI/M/I queueing sy-stam. The holding cost is convex in

the number of customers in the system and the reward for service is a

random variable. Finite and infinite horizon problems with and without

discounting are considered. A terminal reward or cost is allowed in

the finite horizon problems. The author shows that a socially optimal

policy in less likely to accept a customer than an individually

optimal policy.

Stidham aud Prabhu (1974) examine the work that has been done in

control of queueing systems. The authors show how several of the works

are related and point out some generalizations that apply to most of

the papers. For instance, they note that most research has sought to

determine 1) when a stationary policy is optimal, 2) its form, and

3) the value of its parameters.

Yechiali (1971) considers a GI/M/l queueing system. The cost

structure includes a reward for service, a service charge for each

Scustomer served, a cost per unit time in the system, and a charge for

Sbalking. The author finds an individual optimum that is analogous to

that of Naor (1,969). He treats the so-cial optimum problm as a semi-

Markov decision process and shows that a control-limit rule is

optimal; that is, the administrator will operate the queue a3 a finite

capacity queue. As Naor did, he shows that the social optimum is less

than or equal to the individual optimum balking point. He then formu-

lates a linear program, equivalent to the social optimum problem. The

author also considers the revenue maximizer's optimum.

Yechiali (1972) extends the results of Yechiali (1971.) to a

GI/M/s queueing system. The author shows that the social optimum
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balking point is less than or equal to the individual optimum using

the same techniques as in his earlier paper.

2.2 Control of Server

Balachandran (1971) considers an M/G/l queueing system with two

classes of arrivals. Class one customers are of higher priority than

"class two customers. When N class one customers are in the queue, the

service of a class two customer is preempted until all N class one

customers are served. Service of the class two customer is then

res#med without loss of service accomplished. The value of N is sought

which minimizes a linear cost function involving the expected number of

customers of each type and the expected preemption rate.

Crabill (1972) examines an M/M/l queueing system with a constant

arrival rate and a service rate p where ,*1 K K. A policy for j
choosing the service rate as a function of queue length is sought to j
minimize the long-run average expected cost rate of the queue. The

cost expression involves a customer iuconvenience cost rate which

depends on the number in the system and a service cost rate which

depends in the service rate used. The optimal policy is shown to be a

set of k + 1 numbers which specify the range of values of number in the

system for which each service rate is to be used.

Heyman (1968) considers an M/G/l queueing system with the

following cost structure:

a) Dormant cost rate.

b) Running cost rate.

c) Start up cost.

d) Shut down cost.
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e) Holdiag cost rate.

The purpose of the paper is to find the policy th-L Ainimizes the total

expected operating cost from among all possible policies of turning the

server off or on during the operating horizon. For the undiscounted

infinite horizon model, the optimal policy is shown to be either the

server is always running or the server is turned on when n customers

are in the system and off when the system is empty. For small interest

rates, the optimal discounted policy is approximately the same as the

optimal undiscounted policy. The aixthor gives a recursive relation for

determining the optimal policy for a finite horizon.

Zacks and Yadin (1969) examine an M/M/l queueing system with

arrival rate X and service rate V, where V can be chosen from (O,p*).

The following cost structure is considered:

a) Hiiding cost rate.

b) Cost of switching service rate.

c) Service cost rate.

The policy specifying service rates which minimizes discounted costs

over an infinite horizon is sought. The optimal control times are

shown to occur immediately after a change in queue size. For the

special case of linear holding costs, switching costs that depend only

on the absolute value of the change in service rate, and convex service

cost rates with bounded derivatives, the optimal control policy is of

the form:

a) Increase p to n(x) if ji < _(x).

b) No change if a(x) - - n(x).

c) Decrease p to n(x) if P > n(x).

S" , * . . " . . .. . .. .
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x is the number in the systcem and n(x) and n(x) are service rates

associated with a given number, x, in the system.

Zacks and Yadin (1970) examine the special case of their earlier

paper in a little more detail. Some additional properties of the

optimal policy are established and a numerical example is provided.

2.3 General

Dear (1976) considers the problem of scheduling the landing of

aircraft. He constrains the capability of the scheduler so that he can

move an aircraft no more than a given number of positions from its

first-come first-served position. These constraints keep the schedule

feasible in that changes cause6 by a new arrival will be relatively

minor and any given aircraft will land reasonably close to its first-

come first-served time. Yet the conrtraints are loose euough to allow

considerable improvement in runway utilization over the first-come

first-served schedule.

Hodgson and Koehler (1978) examine the solution of Markov

decision processes by policy iteration when the systems require large

numbers of states. The authors give a procedure for transforming

finite state, continuous time Markov or semi-Markov decision processes

so that an approximation algorithm by White and Odoni can be used.

Koopman (1972) considers queues of aircraft awaiting landing at

a single runway where there is a fixed maximum queue length. Arrivals

are assumed to form a time dependent Poisson process and service times

are either time dependent exponential random variables or time

dependent constants. A periodic solution is assumed for the probability

of n aircraft in the system; that is, P (t + T) - P (t). Numericaln n
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results are given for several sets of values of the parameters. For

the cases run, the author notes that results such as expected number

in the system were remarkably insensitive to the form of the distribu-

L tion assumed for service times.

White, Schmidt, and Bennett (1975) present in Chapter VII the

statistical techniques necessary for modeling the components of

queueing systems. Modeling the arrival and service distributions are

of major interest. The authors give the theory and examples for:

a) Selecting candidate distributions.

b) Determining numerical values for the parameters of th

distributions.

c) Testing the hypothesis that the chosen distribution is

the true distribution.

4

..... .... .



CHAPTER III *
THE SINGLE CLASS MODEL

This chapter defines Model 1, the single class of customers

model. The methods that Naor (1969) and Yechiali (1971) used to solve

for the social optimum are presented and their approaches are compared.

The model is also formulated as a linear program following Yechiali

(1971). Then, the effect of changing the arrival rate on the solution

is investigated. Finally, entry tolls are used to impose the social

optimum solution on individual customers.J

3.1 Model I

Model I has a single class of customers. The arrivals form a

Poisson streaim with mean rate X. The service times of the single

server are independent, identically distributed, exponential rando' I
variables with' mean 1/p.. Thus, this model is an M/M/l queueing model. I
The following cost structure is imposed on the operation of the

queueing system:

a) Each customer served receives a reward of R dollars.

b) Each unit of time a customer spends in the system costs

him C dollars.1

Suppose that er~ch arriving customer is given the choice of

joining the queue and receiving reward R and paying C per unit time

in the system or of not joining and not paying or receiving any money.

In this and the other models to be considered, customers are assumed to

decide by comparing the expected net gain associated with each decision
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and choosing the action with the larger gain. (In case of a tie, the

customer joins the queue.) This model is considered by Naor (1969)

and Yechiali (1971), although Yechiali allows a general arrival

distribution and a slightly more general cost structure.

3.2 Naor's Approach

After detailing the assumptions and structure of the model, Naor

argues that all reasonable strategies lead to a finite capacity queue.

The task remaining then is to determine the optimal capacity, n. Naor

first deals with determining n - n under self-optimization where each

customer considers only his own expected net gain in deciding whether

or not to join the queue. The expected net gain for joining is

R - (i + 1)C/p, where i is the number of customers the arrival finds

in the system. Joining the queue serves the self-interest of a

customer if i is lts than ns, where n is such that
R - (n s )/ < 0 1R- nsC/11

s 5

This strategy leads to an M/M/l/n queueing system where

ns M /. (3.1)

The brackets indicate that ns is the greatest integer in RU/C. Thus,

the capacity of the queue or the balking point is ns for the self-

optimization problem.

If each customer or an administrator acts to maximize the sum

of the individual net benefits, the problem becomes the social optimum

problem. Considering an infinite horizon without discounting, Naor

sets up an expected overall net benefit rate function. In notation

based on Gross and Harris (1974), the expected net benefit rate is

as follows:

LeI
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g(n) - X'(n)R - CL(n) (3.2)

where X'(n) and L(n) are, respectively, the effective arrival rate and

the expected number in the system when a maximum of n customers is

allowed in the system. g(n) is the expected net benefit rate or

expected rate of gain when a maximum of n customers is allowed in the

wystem. The units of g(n) are dollars per unit time. Setting p "/p

and using formulas for X'(n) and L(n) that are available in Gross and

Harris (1974) yields:
g(n) - XRU1 - pn(l _ 0)/(i pn+l) . ¢{/(1 - P)-

- (n + 1) n+1/(l - n+l)} (3.3)

The administrator wants to choose n to maximize g(n). g(n) is

discretely unimodal in n (proof given in Appendix B), which implies

that a local maximum is a global maximum. Thus, the administrator tI
needs to find n - n, such that:

<

Ag("o + 1) < 0 - Ag(no0 )

where Ag(n) - g(n) - g(n - 1) . Naor shows that n0 satisfies
n

{n o(1- p) - p(i - p )}/(1 - p) 2
n+102

= R/C < {(n0 + 1)(1 - p) - p(l - p 2)/(1 -)

(3.4)

For continuous variables v. RU/C, and v0 related by
Vo

v 2{v (1 - p) - p(I - p 0)}/(l - p) . v (3.5)
0 s

<

Equation (3.4) leads to v - v and, since v increases with v
0 5 5 0

no - [v.]< n - [v] . (Proofs of these assertions also appear in

Appendix B.)

- ,, I. , .
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Lippman and Stidham (1977) and others assert that n 0  n is

due to an individual optimizer's failure to consider the decrease in

benefits to later arriving customers caused by his joining the queue.

This type of effect is called an external economic effect. Considered

another way, the difference between the social optimum formulation and

the individual optimum formulation is that the social optimum formula-

tion includes arrival rate information. This information allows the

administrator to anticipate expected benefits from customers who have

yet to arrive.

The queue capacity of the individual optimum problem serves as

an upper bound on that of the social optimum problem, This bound is

useful in limiting the number of possible solutions that need to be

considered when approaching the problem as Yechiali does. The optimal

capacity n0 of the social optimum problem is found by solving Equation

(3.5) for v0, then setting no 0  IVo1. Thus, Naor presents solutions to

both the individual and social optimum problems.

3.3 Yechiali'.s.Approach

Although Yechiali '1971) considers a general interarrival time

distribution and a slightly more general cost structure than Model I,

this discussion of his results is couched in the terminology and form

of Model 1. First, a few terms and concepts need to be defined. n n is

ththe number of customers in the system at the instant of the n arrival.

(A nI is the sequence of successive decisions made by arriving customers,
Z1h

where A - 0 if the nth customer balks, and A a 1 if he joins then n

queue. (nn, A n}, n - 1, 2, ... is a semi-Markov decision process.

(See Appendix C for a brief introduction to semi-Markov decision

-I
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processes.) H (nil t "' •m' A0}(1o * 0) is the history of the

process through arrival m. A policy P for iontrolling the system is a

Pset of decisions (D kH1.m )), m i, 2, ... k- 0, 1. (H , nm)
is interpreted as the probability of implementing decision k (k - 0 if

balk, 1 if join) at time m given history H and present stale rm when

policy P is in effect.

Yechiali categorizes possible policies for controlling the

system in the following manner. Let Ct be the class of all policies

(DP(HIs TIM)). Let C a subclass of Ct, be the class of stationary
Markovian policies; that is, for each arrival, only the state of the

system at the instant of the arrival is used as a basis for making the

decision of whether or not to join. Since, in Model I, the service

times are exponential and the horizon is infinite, only stationary

Markovian policies need to be considered, For convenience, let Di(1)

be the stationary probability that A w 1 given that rn " i, and
(1-Dil} iO)b ten n

(1 - Di(1)) - Di(0) be the stationary probability that A " 0 given

that rn n i. Sk is the class of all stationary policies such that

0 < Di(l) 1 for i < k and Di(1) - 0 for i > k. Sk is called the

class of stationary control-limit policies of order k. Let S denote

the class of stationary control-limit policies of infinite order; thus,

P•S if P - (Di(1): Di(l) > 0, i - 0, 1, ... ). Yechiali calls the union

of Sk and S the class of control-limit policies, denoted by Coz, which

is a subclass of Cs. Let Cd, a subclass of Ct, be the class of

Pnonrandomized policies, thus, PeCd implies Dk(.,.) - 0 or 1. The

class of deterministic control-limit rules, Cdck, is a subclass of Cd

and Cc. PrCd• if P- {Di(1): D (l) - i, 1 k; DI(1) 0, i > kQand d iZ i k 1
for some k or P - {D(1): D (i) - 1, i - 0, i, ... }.

'V

S• . ... • • ... •,, •'• ,, € • • •.•..'" •÷'•!..,•,/,• • .?:.•. ,. .... •'a
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Now, consider the individual optimum problem. A policy, P, or

a set of joining probabilities {D (.,.)} is sought that maximizes an

arrival's exected net benefit. If the customer balks, his expected

net benefit is zero. Since the service times are exponential, the

expected time in the system for an arrival who finds i in the system

is (i + I)/u. Thus, the expected net benefit for joining is

R - (i + I)C/u. A policy P is sought such that
F-. P

D D(H _,i)(R - (i + 1)C/p) (3.6)

is maximized. If n5 is such that R - n C/ i - 0, but R - (n + I)C/i1 <0,

then clearly P - {D P(H i)-1,1<n;DP( Pi-0,1 n slm-l 1, iM ;D( ,)-,i i i

the policy that maximizes Equation (3.6). The optimal policy is a

deterministic control-limit rule which is indeed the same policy that

Naor found.

Determining the optimal policy for the social optimum problem is

more involved. The customers or administrators are assumed to act to

maximize the expected net benefit per unit time of the arrivals as a

whole. If g is the expected net benefit rate, two policie. P and P'

are called g-equivalent if gp - gp,. The expected net gain rate of the

arrivals as a whole under policy P is:

g Y OP D (l)X{R - C(i + 1)/I} , (3.7)
i-o

where i is the steady state or stationary probability that the system

is in state i if policy P is used. D (1) is the stationary probability

that customers are allowed to Join under policy P when i customers are

in the system. The main difference between the social optimum formula-

tion and the individual optimum formulation is that the social optimum

- -'..- -
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formulation includes informatioa about the stationary probabilities of

the various states. This information allows the administrator to

anticipate expected benefits from customers who have yet to arrive.

Yechiali first establishes that for every PECs, there is a
s1

&-equivalent rule P'EC Thus, the search for the solution to the

social optimum problem can be restricted to control-limit policies.

He uses the fact that a nonrandomized policy is optimal for a fLnite

state space to show that a deterministic control-limit policy, PeCdc,

is optimal for the finite state spac. social optimum problem. For the

infinite state space social optimum problem, he considers two cases,

an ergodic case and a nonergodic case. For the nonergodic case (X w p),

he argues that L(n) 4 • as n t •; Lhus, g(n) co - as n - on. (Here,

g(n) denotes the expected gain rate under any control-limit policy

with a maximum of n customers in the system.) Since g(n) is finite

when n is finite, the finite szate-space result can be used to show

that a finite deterministic control-limit policy is optimal for the

nonergodic case. In the ergodic case (X < 1i), Yechiali uses the limit

of a sequence of finite state-space problems to show that again a

deterministic control-limit policy is optimal. He then uses arguments

based on the policy iteration algorithm of Howard (1960) to establish

that the social control-limit, n - 1, is less than or equal to the
individual control-limit, n - 1. (Howard's policy iterntion algorithm

is discussed in Appendix C.)

The solution to the social optimum problem can be found using

Howard's policy iteration algorithm. (The solution of a small problem

by policy iteration is given in Appendix C.) For each state i, only two

choices exist in the policy iteration procedure, either reject the

Ht
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customer, k - 0, or accept the customer, k - 1. For later models, the

range of alternatives will expand. When policy iteration is used to

solve for n in Yechiali's formulation, n serves as an upper bound on
0 s

the state space needed to describe the problem.

3.4 Comparison of Results

The two developments of ns, the balking point in the self-

optimum problem, given in Sections 3.2 and 3.3, lead to the same

expression for determining n ; namely, n " RNi/CI. This sectionSS -

establishes that the gain rate expressions for the social optimum

problem (and thus, the solutions) in Sections 3.2 and 3.3 are the same.

In fact, the expressions are also shown to be equivalent to a third

gain rato expression.

Naor's work determines the capacity of the system, no tha
0 V

maximizes Equation (3.2). Yechiali's work determines a control-limit

policy that maximizes Equation (3.7). Control limits and system

capacities are related in the following manner: a control limit of j

leads to a capacity of J + 1. A third term used here, balking point

or forced balking point, is equivalent to the capacity of the system.

Let Naor's form of the expected social gain rate be called gN"
From Equation (3.2), gN(n) - X'(n)R - L(n)C. gy(n) is Yechiali's form

of the expected gain rate expression. In this form of the gain rate

expression, the expected net reward, i.e., the reward for service minus

the expected waiting cost {R - C(i + l)/U} is givan to an arrival the

instant he joins the system. In the third form, gT(n), the waiting

costs are charged over the length of the customer's stay in the system

while his reward is given to him when he joins. gT(n) and &Y(n) are

.....
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developed using notation from Howard (1971) and both are shown to be

equal to S (n).

TF(n) is developed first. n, the forced balking point, is the

upper limit on the number in the system. Lec y be the cost per unit

time the system is in state i, where state i indicates that i customers

ara ia the system. Here, y. is simply Ci. Let b,, be the reward for a

ransitio =from state i to state J.
' IR jwi+l

bij 1o otherwise 
A

CLot --•ijbe the expected holding time in state i given that the next

transition iaZ- taeJ is the probability of a transition from.- n
state i to J. TIC is the expected waiting time in state i.

"If r is defined to be the expected reward per occupancy of state i,

then:

n
W" ' - P (-y•tij + b1 j)

-cit + Pi, k1a

Defitne q to be the expected reward per unit time in state i.

q r I .'Ci + Pi,i+IR/Ti

G nice n is the forced balking point, a state dependent arrival rate X

may be defined as follows:
Lx ,i<rn

Since the interarrival and service time distributions are exponential,

the transition rate out of state i, Ti, is given by:
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TiM i i -I0

Xi +"

Thus, Ti - 1/T i or

/I =+ U) 0
iw

Also, the probability of a transition from state i to i + 1 is

" i -0O

P i,i+l X li/(i + 'p) 0 < i < n

0 i n .

Thus, the expected reward rat* in state i becomes

qi - Ci + XiR

Using results from Howard (1960), gT(n) can be written as

n

T (n) " (n) ql (3.8)
i-o

where 0 (n) is the steady state probability that i customers are in the

system given that the forced balking point is n. (This equation is

similar to Equation (3.7) in Sectiou 3.3.) Thus,

n n

9T(n) 1 0 01(n)WX - C 1 O1 (n) i
i10 i-

n-1
i1a £i(n) -cL(n)

n-I
t I 0(n) is the mean rate at which customers actually join the

i-o
system which is the effective arrival rate, X'(n). Thus,

T(n)- ' (n)R - CL(n) - BN6 n) .

T1
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For Sg(n), y, -0 and

R- (i+)1)C/l j i+ 1
bi
Lj 0 otherwise

Thus,

n

r Pijbij P {R - (i + 1)C/U}
j -o ii 1+

The expected reward per unit time in state i is given by

q, (R - (i + i)C/l}/t

Xi and Ti for gy(n) are the same as they were for gT(n). Thus,

Ii{R - (i + i)cll/(i/X ) i - 0
q { /( + + + 3.)C/I}/{i/QX + U1 i > 0

Thus, for any i, q- XiR - X,(i + i)C/V. As in Equation (3.8),

n
y(n) "I 0(n)q,

which becomes

n-i n-i
gy-n) = RY 0i(n) - Cy (X/))0i(n)(i + 1)

i-o i-o

For an M/M/i/n queue, 01+1(n) - (X/1 )0i(n) if 1 - 1 + 1 n. Thus,

n-i
gy(n) - X'(n)R - CY 0i+i(n)(i + 1)

i-o

u V'(n)R - CL(n)

N gN(n)

and this establishes

Theorem 3.1: gN(n) - gy(n) -gT(n)

(A result analogous to gy(n) = gT(n) for a discounted infinite horizon

problem is established in Stidham and Prabhu (1974).)

- - -----.-
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3.5 Linear Programming Formulation of the Social Optimum Problem

Naor's formulation of the social optimum problem can be written

as

axg(n) X '(n) R -CL(n)
n

which is a nonlinear programming problem with an integer valued

decision variable. However, this section shows that Yechiali's

formulation can be transformed into a linear programming problem.

The following linear programming formulation is similar to that

of Yechiali (1971) but is modified to maximize expected gain rate as in

Fox (1966). Since n < ns, only states 0 through n can have positive

steady state probabilities. A policy P*eC is sought such that

n 1 n s
max 0• P iDiP(k)ri(k)}/{• s •I DiP(k)-Ti(k) }. (3.9)

gP* - PE i kmo i i 0iD(k
* s i-o ko i-ok-o

i
PP

policy P. D is the probability of choosing action k (k - 0 if

balk, 1 if join) in state i when policy P is used. ri (k) is the

expected reward per occupancy of state i if action k is chosen. Ti(k)

is the expected waiting time in state i when action k is chosen.

Equation (3.9) is just Equation (3.7) written in a slightly

different manner. D (1)X{R - (i + I)C/U} from Equation (3.7) is q

the expected gain per unit time in state i when customers are allowed

to join. However, qi(1) - ri(l)/1i(1) and qi(O) - 0. In Equation

(3.9), the ri(k) and qi(k) terms are summed separately, then divided,

as opposed to Equation (3.7) where qi(k) is formed first. In words,

Equation (3.9) is the expected gain per transition divided by the

expected time per transition which is indeed the expected gain per

unit time.
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The balance equations and normalizing equation which the steady

PPstate probabilities { iDi(k)} must satisfy are

n
s i 1

o -• D (k)Pij(k) - k 0 D (k)i 0, j - 0, ... , n - 1
i-o k-o i k-o s

(3.10)

and
n

*~si
0 1 D D (k) - 1 , (3.11)

J-o k-o

where 0 OP <1 and 0 < D'(k) 1 1. P (k) is the probability of a

transition from state i to j if action k is chosen. Note that Equation

(3.10) consists of only ns equations since the redundant balance

equation for state n has been dropped from the formulation. Equations

(3.9) to (3.11) constitute a linear program with a fractional objective

function.

A linear program equivalent to Equations (3.9) to (3.11) but

without the fractional objective function will be developed using the

work of Fox (1966) and Charnes and Cooper (1962). First, let

xi(k) - 0iDi(k), so that Equations (3.9) to (3.11) become

n n
I 1P IC Y- i(k)ri(k)}/{y I x (k)T i(k)}

s i-c k-c i-c k-o

subject to

n 1 1

PI
i-c ko Pij - 7xP(k) -0, j 0 , ., n -1

j P

i-o k-o k-o 's

I x.(k) 1 x W 0
J-o k-o
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I>
Let yi(k) - txi(k), where t 0 0, be chosen so that

s 1 P
S yi(k) Ti(k) 1 1

i-o k-o

Multiplication of the objective function by t/t yields

nmax s 1 p
Poc S X yi(k) ri(k)

Ss i'o k-o

After multiplication of Equations (3.10) and (3.11) by t, the linear

program becomes

nns 1
Sip

P•s i-o i-oi

subject to

n S1 P1

n yi(k) P-(k) ty (k) 0, j 0, n 1 4
iJo k-o

n s 1

PI
yj~o t~ •k >O

jino k-o

n
s 1~
jykn y(k)T (k) P

yj (k) > 0, t -0

The last constraint is included to maintain the transformation. The

first n constraints together with the last allow at most n + 1 of8 s

the yj (k)'s to be positive. The next to last constraint merely adjusts

the value of t. Since t is of no interest, it and the next to last

constraint can be dropped from the formulation. Thus, Equations (3.9)

to (3.11) can be written as the following equivalent linear program:

f.
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max Y(k) (3.12)

i-o k-o

subject to

y [ yi(k)Pij(k) - y (k) 0, J-O, n

i-o ko ko s
(3.13)

1s

S M y(k)--(k) - 1 (3.14)
J-o k-o

y (k) 0 (3.15)

The superscript P has been dropped since the optimal policy can be

recovered from the solution to Equations (3.12) to (3.15) through

D (k) - yi(k)/ Yi(k), i - 0, ... , ns; k - 0, 1.

(3.16)

Fox also shows that the Di (k) are either zero or one and at most

ns + 1 of them are one. can be found from

-* y(k) T, (k), yi(k) > 0I0 otherwise

The linear program yields the social balking point through

n - max{i: yi(1) > 01 + 1 0 ,3.17)

3.6 g and n as Functions of I

It seems reasonable to conjecture that the expected gain rate

can only increase as the arrival rate increases. This is now

established.



36

Theorem 3.2: g is a nondecreasing function of X.

Proof: Let X' > X". Define g(P,X) to be the expected

gain rate under policy P when the arrival rate is X.

Let g*(O) denote the optimal expected gain rate when the

arrival rate is X. Since Yechiali (1971) shows that a

deterministic control-limit policy is optimal, let

P* W {D(1): Di(1) - 1, i- n - 1; D (1) - 0, i > n - 11

be the optimal policy when the arrival rate is A". Let

P'eCc, (the set of stationary control-limit policies) be

such that P' - {Di((1): Di(l) - X"/ AI, in - 1;

Di(1) - 0, i > n0 - 1}. Under policy P', an arrival who

finds less than n in the system is allowed to join with

probability X"/ X' and is forced to balk with probability

1 - (V"/X'). Thus, P' is not a deterministic policy.

Since no penalty is assessed for rejecting a customer,

g(P', X') - g(P*, X"). Finally, since g*(X') - g(P',X'),

g*(X')

Although policy iteration gives a method for determining the

social optimum, no, for a given X, the following section presents a

method for determining the range of values of A over which a given n0

is optional.

* Define {f(i)} to be the sequence of expected net rewards of

joining customers, where f(i) - R - C(i + 1)/p is the expected net

reward if i customers are in the system. In Yechiali's formulation,

an arriving customer receives his expected net reward upon entering
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the system. Thus, for Yechiali's formulation, the expected net gain

of the system per occupancy of state i is

fti) i = 0
r±i M •I(i + W)}f~i), i > 0

Since
•¥ • •/Xi ,i - 0

T- i a
- /(X +{), i> 0

the expected reward per unit time in state i is

qi ri/Ti Xif(i)

where

Ii< n°0

Ai 0, 1 "> n°

Also, from Equatibn (3.8),

n
g(n) 7 0 (n) q ,

i -o

where the Y subscript has been dropped since the three equations for

gain rate were shown to be equal in Theorem 3.1. Naor states that g(n)

is discretely unimodal in n. Thus, if Ag(n) - g(n) - g(n - 1), then n

such that Ag(n + 1) < 0 - Wg(n ) is optimal. Note that

n n-l
Ag(n) - . 0 1 (n)qi(n) - - 0 i(n - l)qi(n - 1) (3.18)iioi'o

where qi(n) denotes the expected gain rate in state i when the forced

balking point is n. Thus, qn(n) - qn-1 (n - 1) - 0 since no entry is

allowed at the forced balking point.

qi(n) - qi(u - 1) - Xf(i) , for i - 0, ... , n - 2;

qn-1(n) Xf(n 1)
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Substitution for q±(.) in Equation (3.18) yields

n-2
Ag(n) = [ (0 (n) - 0 (n - 1)}Xf(i) + 0n_(n)Xf(n - 1)

i-O

Since no f(i) 0. Also, 0 ni(n) > 0 and 0 -W 00i(n 1) <.

i:! ' Thus, Ag(n) "> 0 if

Si nce: (n)Xn 0 -f 10 (0 (n - 1) - 0 1 (n)}Xf(i) (3.19)

i! .o
%f p- 1, then Equation (3.19) can be written as

( P - p)pnf(n - 1)/(1 - pn+l)

n-2• {i -P)Pi/(1 _ pn) . 1-P) r)i/( - In)f•

1 -0 (3 .20)

After formatiiul of a common denominator on the right-hand side and

division by {(i - p)/(1 - Pn+l)} > 0, Equation (3.20) becomes

n-2f(n- 1) => (P(1-_ P)/(,-pn)) p, pf(1) ,
i•o

Since / p-, this leads to Ag(n) - 0 if
i-o

n-i n-2
f(n- 1) p p pif() n -> 2 (3.21)

i-o i-o

Now consider the case where p - 1. If p - 1, 0 (n) * 1/(n + 1), so

Equation (3.19) becomes

n-2
f(n- 1)/(n+1) 1 • (1/n - 1/(n+ l)}f(i)

After some algebra, this can be written as

n-2
f(n- 1) - f())/n

i-o

i~l> .~ -~
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Since this is the limit P ÷ 1 of Equation (3.21), Equation (3.21)

can be used for all values of p.

Finding the range of X over which n - 1 requires findingo

such that Ag(l) ý 0, but Ag(2) < 0. If g(l) < 0 (R < C/P), the

system is trivial since no customer ever enters. Thus, Ag(l) - 0 for

all X since g(0) u 0. For Ag(2) < 0, Equation (3.21) is a linear

function of X. Finding the range of X over which n - 2 requires0

finding X such that Ag(l) - 0 but Ag(3) < 0. Again, for Ag(2) 0,

Equation (3.21) is a linear function of A. For Ag(3) < 0, Equation

(3.21) is a quadratic function of X. This pattern continues so that

finding X such that Ag(n + 1) ! 0 or Ag(n + 1) < 0 requires finding

the roots of an nti degree polynomial, Use of Equation (3.21) is

demonstrated with an example.

Suppose the reward for service of the members of a single class

of cuutomers is R - 5. Also, suppose that the cost per unit time in

the system is C 2, and that the service rate of the single server is

-- 3. (f(i) - {R - C(i + W)OI} = (13/3, 11/3, 3, 7/3, 5/3, 1,

1/3. -2/3, ... ) . (Note that n 7.) First, find the range of
>

values of X for which n -1 . Ag(l) 0 for all X. Ag(2) < 0 if

from Equation (3.21)

1 0
f(l)z Pp < P, p f(i) or 16.5 < X

i-o i-o

Thus, n W 1 if A > 16.5. Now, find the range of A over which n - 2.

Ag(2) ý 0 if A in16.5. Ag(3) < 0 if from Equation (3.21)

2 1i
f(2) Z p > p 7 P f(i) or -2 2 -12X + 81 > 0

io i-o

Solution of the above for X yields Ag(3) < 0 if X > 4.035. Therefore,

4
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n 2 if 4.035 < X 16.5. Further use of Equation (3.21) yields

n 0 s3 if 2.1 < X 1 4.035. Table 3.1 presents the results of theI

policy iteration program of Appendix C for this example. These

results are given to confirm Equation (3.21), to illustrate Theorem

3.2, and to introduce the next idea.

TABLE 3.1 f

Policy Iteration Results for Various Values
of X for a One Class Example with Rm 5,

C -2, and V1 3

0.1 7 0.431

1.0 5 4.003

2.1 4 6.9441

2.2 3 7.128

4.02 3 8.993

4.05 2 9.011

16.4 2 10.998

16.6 1 11.010

100.00 1 12.621

The value of n0 the forced balking point for the social

optimum problem, appears to decrease as the arrival rate increases

in Table 3.1. This result is established as Theorem 3.3.
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Theorem 3.3: no is a nonincreasing function of .

Proof: Since Naor proved that g is discretely unimodal

in n, n is optimal if Ag(no + 1) < 0 Q Ag(n 0 ). Let

no(X) denote the optimal forced balking point when the

0

arrival rate is X. Let n - n (X"), where X" is a fixed

value of X. From Equation (3.21),

g(n) 0 if

n-i n-2f(n 1) -1[ > > -2

I P P7, pif(j)
i-oi-

for n - 2, which can be written as

Ag(n) > 0 if

f(n - 1)(1 + p + ... + pn-l) _ pf(O) + P f(l)

o 
pn-lf

+ ... + P f(n - 2)

(3.22)

As X increases, p increases. Since {f(i)} decreases as

i increases, f(0) > f(l) > ... > f(n - 2) > f(n - 1).

Thus, as X increases, the right-hand side of Equation (3.22)

increases faster than the left-hand side. This eventually

leads to Ag(n) < 0 for X greater than or equal to some

X' > X". Therefore, n (X') < n (X"). Since Ag(1) > 0 for
0 0

all X, continuation of the above argument leads to the

existence of X" such that n (X) - 1 for all X X". Thus,

as X increases, n decreases until it becomes equal to oue.
0
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Consider again the value of g as X increases in Table 3.1.

Theorem 3.2 established that indeed & can only increase as X increases.

However, note that g appears to approach a limit as X ÷ =. From

-Theorem 3.3, n decreases as \ increases, so that eventually n - 1.

Ifn - 1,

0 (I) -/(P + X) and 0I(i) -/(P + X)

From Equation (3.8),

n

g(n) 0 n)q~

so

g()- ,f(0) /( + X)

Dividing numerator and denominator by X and then letting X + •, yields

limX4_ g(l) - Vif(O) (3.23)

For this example,

lim.•g(l) - 13

3.7 Tolls

Lippman and Stidham (1977) define an optimal congestion toll as

"an entrance fee that induces customers acting individually to behave

in a socially optimal way." Two types of optimal congestion tolls

are considered. The first form of the toll is analogous to the tolls

of Naor (1969) and Yechiali (1971). The second form illustrates what

Lippman and Stidham (1977) call the monotonicity of a toll that is a

function of the number of customers in the system.

1The "tolls" developed here are actually payments for not

joining but have the same effect as charges made for joining.

_!A ,.z7• .'-..• l•,,'.,• •, • .. .... ..... , •" •.,.., :•':.• .,• ,', • . .. " -.- ... .... .., . ., • • _• , • • :,•,• ,• , .,. - • . . . • ,.• .. ,,=,, •.•j<: ,,•!,.::• a•, •:, ,. ...
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Suppose that the assumptions of Model I are modified so that an

additional term, Q, is introduced into the cost structure, where 0 is

a fixed piyment to any custower" who does not join the queue. If each

customer is allowed to decide whether or u~ot to join the queue, :hen

tach will maximize his own expected net benefit. Expected net beefit

for joining is still R - (i + l)C/P if i customers are in the system,

but is now Q for not joining. Thus, joining serves the customer's

self-interest if R - (i 4 1)71• > Q. This leads to an M/M/l/n's

queueing system, where n; is such that

Thus,

n (p,- opi/ CJ

which ia just Equation (3.1) with R replaced by R - Q.

If an administrator decides who Joins the queue and he wants to

impous a limit of n from the original cost structure of Model I, he

can do so by changing the cost structure to include Q. Since

<5
(R - Q/C w RP/C, n' n n The administrator needs to choose Q

wuch that n' - n . Thus, he must find Q such that
B 0

R - C(n + 1)/P 4 Q ' R - Cno /1 (3.24)

which corresponds to the tolls of Naor (1969) and Yechiali (1971).

Suppose now that the assumptions of Model I are modified so

that again a term is added to the cost structure. Any customer who

does not join the queue is paid q-i, where q is a fixed amount of

money and i is the number of customers in the system. Again, assume

that each customner acts to maximize his own expected net benefit. The
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expected net benefit for joining is still R - (i + 1)C/V; however, the

expected net benefit for not joining is q'i. Joining serves the self-

interest of the customers if R - (i + 1)C/U - q'i. This leads to an

1/M/l/n" queueing system, where
S

n FW(R + q)/(C + U)

Again, if an administrator decides who joins the queue and he

wants to impose the social limit from the cost structure of Model I,

he can do so by changing the cost structure to include q'i. Since

R - (i + 1)C/P - R - (i + 1)C/p - q'i, n - n . The administrator

wants to find q such that n" - n0 . Such a value of q is determined by
S 0

{VR - C(n°0 + 1)}/(Uno) < q (PR - Cno0)/{p(n° - 1)}.(3.25)

3.8 Conclusion

The simplest model of a controlled queue considered is Model I.

The semi-Markov decision process and linear programming formulations of

the model that Yechiali (1971) presents can easily be solved for n by
0

use of a policy iteration algorithm and a simplex algorithm, respec-

tively. Although Model I is not a particularly realistic representation

of a system such as an airport landing queue, it serves as a point of

departure in the development of more realistic models.
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CHAPTER IV

THE SEVERAL CLASS MODEL

This chapter defines Model II in which several classes of

customers are considered. The formulations of blodel I presented by

Naor (1969) and Yechiali (1971) are extended to Model II. The form of

the optimal policy is shown to be a set of forced balking points, one

for each class of customers. The Naor type of formulation of Model II

is not easy to solve; however, the formulation of this model as a

semi-Markov decision process following Yechiali (1971) lends itself to

solution by both policy iteration and linear programming.

4.1 Model II

This model allows M classes of customers. The arrivals from

each class, m, form a Poisson stream with mean rate X , where

m 1 1, 2, ... , M. The service times of the single server are inde-

pendent, identLcally distributed, exponential random variables with

mean 1/i. Like Model I, Model II is also an M/M/l queueing system but

now the customers come from M separate groups or classes with varying

costs and rewards. A member of class m receives a reward for service

of R and pays Cm per unit time he spends in the system. To avoid
m

trivialities, R is required to be greater than or equal to Cm /p form

all m. Again, two objective functions are considered, one for self-

optimizing customers and the other, the one of primary interest, for

customers acting "socially." Each arrival or the administrator is

assumed to be able to determine the state of the system at the time

A-.~* .~ ~ ~ --- -- '-*- _



of each arrival, where again the state of the system is the number of4

customers in the system. An optimal policy is sought for each objec-

tive function; that is,, a set of join or balk decisions is sought for

each class for each possible state of the system to maximize each

obj ective function.A

A self-optimizing customer decides whether or not to join byJ

choosing the larger of the expected net benefit for joining and the

expected net benefit for not joining (which is zero). For a member of

class m arriving to find i customers ahead of him, the expected net '
benefit of joining is R m- (1 + 1)C m/'P. For the social optimum

problem, an administrator decides whether or not a customer of class m

can join when i customers are ahead of him. The sum of the expected net

benefits per unit time of all arrivals of all classes is shown in

Section 4.5 to be maximized by a policy that imposes a vector n10 of

forced balking points on the customers. -no (n , n ,.... n
1 2 M

where members of class m are allowed to join if the state of the system

is less than n but must balk otherwise.

4.2 Individual Optimum Problem

The solution of the individual optimum problem is investigated

from two points of view. The first development is an extension of the

Naor approach to Model I. If an arrival from class m finds i customersI

ahead of him, his expected net benefit for joining is R m - (i + 1)C m/11.

His expected time in the system is (1 + 1)/p~ because:

1) his expected service time and that of the i1 1

waiting customers ahead of him is 1/u, and

1A
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2) the expected remaining service time of the customer

in service is 1/11 since the service time distribution

is memoryless.

Since the net benefit for balking is zero, joining the queue is in the

arrival's self-interest if the number of customers in the system is

less than n ,where n is such that
m m

<
R -(n +)C/ < R - n C
M s M m s m

m m

"Thus, self-optimizing customers of class m determine a balking point

n such that
sm

n " Rm4IC] , m - 1, 2, ... , M . (4.1)
sm

(The brackets indicate the greatest integer function.) This is

analogous to Equation (3.1) for the single class model. Thus, for the

individual optimum problem, the M/M/l queueing system becomes a finite

capacity system with the capacity given by n*, where

n* = max {n 1 (4.2)
s m (2m

However, members of class m treat the system as if it had capacity ns
m

that is, they balk when n or more customers are in the system.
s mEquation (4.1) can also be developed by extending the Yechiali

approach to Model I. Since customers only use the state of the system
1

to decide whether or not to join the system, only the subclass of

stationary Markovian policies, C , needs to be examined for the optimal

1s

iUsing the state of the system is the best a customer can do
since the transitions are memoryless and the horizon is infinite.

.4
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policy. Thus, a policy P*CC is sought such that P* yieldsS
O M

"six D -a ) k k(i){R - (i + 1)C/i} (4.3)s i-uo m=.l

Expression (4.3) represents the maximum expected gain per customer for

PI
self-optimizing customers. Di(k) is the probability that action k is

chosen under policy P when the state of the system is i. Action

k - ( 2I, k 2 , ... , k..) accepts class m if km - 1 and rejects class m

if k - 0. A 'policy P is a set of join or balk decisions for enchSm

class for'every possible state of the system. The notation k (i) is
m

used to emphasize that the join or balk decision for class m is a

function of i, the state of the system. Again, R - (i + 1)C0 /I is
m m

the expected net benefit to an arrival from class m for joining if i

customers are ahead of him. Equation (4.3) can be maximized by

PIsetting Di(k) - 1 for all i and all k and setting

1, if R - (i + l)C /11 0
k(i) - m

0, otherwise

The same arguments that were used earlier in this section to develop

Equation (4.1) can now be used again to arrive at Equation (4.1).

km (i) can then be found from Equation (4.1) by setting

1i, if i < n
•k m(i) =m

0, otherwise, for m 1 1, 2, ... , M

1..3 Social Optimum Problem

Three different formulations of the social optimum problem are

presented in this section. As in Model I, an infinite time horizon

:I
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without discounting is considered. The units of the objective function

for the social optimum problem are dollars per unit time. Thus, the

administrator wants to maximize the sum of the expected net benefits

per unit time of all arrivals. The formulation that extends Naor

(1969) ia3 presented first.

In Section 4.5, the optimal policy is shown to specify a vector

n of forced balking points, no- (n , n, ... , n ), where class m
0 0 1 0 2' 0M4

joins if the state of the system is less than n and balks otherwise.
0m

The sum of the expected net benefits of all arrivals per unit time when

the forced balking points given by n are chosen is

M M
g(n) '(n)R - I C L (n) . (4.4)

m1 m M mmlm

Here, (n) and Lm (n) are, respectively, the effective arrival rate of

class m and the contribution of class m to the expected number of

customers in the system when forced balking points n are employed.

Equation (4.4) is Equation (3.2) extended to M classes of customers.

Analytic solution of Equation (4.4) for the optimal n is a formidable

task. (See Edelson and Hildebrand (1975) for the case M - 2.)

Although a heuristic search procedure could be used to find a good

solution to Equation (4.4), this will not be done here since the next

formulation of the problem readily lends itself to solution.

The second and third developments formulate the social optimum

problem as a semi-Markov decision process. This second formulation

extends the method of Yechiali (1971) for Model I. Here, the state of

the system is again the number of customers in the system. An arrival

who joins when i are in the system is given his expected net benefit

...... . . .---7777 77.,,,, : - . ..... .
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for joining, Rm - (i + l)C /p, upon entry into the system. The
m m

decision to be made by the administrator for each state of the system

is which classes if any to admit. This decision is represented by

S- (ki, k2 , ... , Y,. where class m is admitted if k - 1 and
m

rejected if k - 0. In Section 4.5, n , the forced social balkingm o
m

point, is shown to be less than or equal to n , the self-optimizer's
m

balking point, for each class m. Thus, n* from Equation (4.2) servess

as a bound on the state space required for the semi-Markov formulation.

A policy P*eC , the class of stationary Markovian policies, is sought

such that P* yields

n*
max g P max s p p M

P•s Pa~ i-o m-1

(4.5)

The units of Equation (4.5) are dollars per unit time, the same units

as Equation (4.4). Comparison of Equation (4.5) with Equation (4.3)

yields some insight into the difference between the social optimum

problem and the individual optimum problem for Model II. The main

difference is that the social optimum formulation given by Equation (4.5)

includes the steady state probability that the system is in state i,

0 ,when policy P is used. This information allows the administrator

to anticipate net benefits from future arrivals. The other differences

between Equations (4.5) and (4.3) are that n* bounds the state space in
S

Equation (4.5) and the inclusion of Xm in Equation (4.5) makes its units

dollars per unit time rather than dollars per customer as in Equation

(4.3).

Equation (4.5) represents the optimum gain rate for a semi-Markov

decision process with a finite state space and a finite policy space.
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The policy space is finite since, at most, 2M actions are possible for

each Qfat most n* + 1 states. Derman (1962) shows that a nonrandomizeds

rule, PECd, is optimal for such a Rrocess. Thus, D (k) can be dropped

from Equation (4.5) since it will be one for the action given by the

optimal i(i) and zero oth-'wise. In other words, k(i) is the only

action chosen in state i under the optimal policy. Equation (4.5) then

becomes

n*
P maX &P I P k (i)X{R - (i + l)C }SPCsdP Cd 1 d-o 1 mi

(4.6)

Solution of Equation (4.6) by policy iteration and linear programming

is examined in Sections 4.6 and 4.7.

The third and final formulation of the social optimum problem

for Model 11 also formulates it as a semi-Markov decision process and

extends the third form of the social optimum problem presented in

Chapter TII. The difference between this model and that which extends

Yechiali's formulation is that now a joining customer receives his

reward for service upon entering the system but pays his costs per

unit time in the system throughout his stay in the system. Since the

social optimum problem of Model II uses an infinite horizon and no

discounting, the timing of the payments does not affect the gain rate

of a given policy. The state of the system must indicate the number

of each class of customers .in the system so that the cost rate can be

computed at all times. That is, the charges for a unit of time with

three customers of class one and two of class two in the system are

different than those for a unit of time with two of class one and three
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of class two. That still more information is needed is demonstrated

by the following example.

Let the number of classes be two and the state space be (i,j),

where (i,j) indicates that i customers of class one and j customers of

class two are in the system. If an arrival from class one occurs and

the customer joins, the state becomes (i + 1,J); conversely, if an

arrival from class two occurs and the customer joins, the state

becomes (±,j + 1). However, if a service occurs, the state of the

system is unknown since the state space does not indicate the class of

the custom~er in service. If the state space is amended to include the

class of the customer in service, it becomes (i~j,k), where k - 1 if a

class one customer is in service and k - 2 if a class two customer isI

in service. This definition of the state space still does not contain

enough information to keep track of the number of each class of

customers in the system. For instance, suppose that the state of the

~1 ~ system is (2,2,1). Thus, two customers of each class are in the system
and one of the class one customers is in service. If a service occurs,

the state becomes (1,2,?). Since the service discipline is first come '

first served and the state space does not indicate which customer is

first in line, the class of the customer moving into service is unknown.

The system occupation costs can be calculated for the present state,

but if another service occurs, the number of each class of customers

in the system is unknown. Thus, the state space must be expanded

further. In fact, the state space must indicate exactly what the queue

looks like. A state space like (min, i 2 , ... , m~,.. is needed where

mij indicates the class of the customer in position J. For example,

state (1,2,1,1,2) indicates that a customer of class one is in service
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followed by a customer of class two, two of class one, and finally a

class two customer. Although this state space becomes large and

complicated when the liumber of customers in the system is large, the

social optimum problem for Model II can still be formulated in this

manner.

Again, only the class of stationary Markovian policies needs to

be considered. For each state of the system, an action k-

(kl, k2 , $#., k) is sought to maximize the gain rate of the system.

As before, class m is admitted if k - 1 and must balk if k - 0.m m

Let m - (min, m2 , ... , mj, ... ) indicate the state of the system, where

Sgives the class of the customer in position J. Also, let a m (m) be

the number of customers of class m present in state m. Note that only

the number of customers of each class t.n the system is required to

compute the occupation costs at any time, but the position of the

customers in the system is required to keep track of how these numbers

change as the system goes through various transition. n* from
s

Equation (4.2) still serves as a bound on the number of customers

allowed in the system. If m' denotes the set of all m satisfying

Y a(m) -< n* (4.7)
i,,1

the objective function for this third formulation of the social

optimum problem is

max max D p
PEC 9P Pec Dm -- (km()XmiRm- ma( m)C } I

s s m m m-1
meam' (4.8)

Since this is again a finite state-space, finite policy-space problem,

a deterministic policy is optimal according to the results of Derman

% I
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(1962) and thus, D (k) can be eliminated from the formulation.
m

Equation (4.8) then becomes

ME

mlax g . U1ax 7. 0P {kmrm)XmR _-mrm)Cm} .

PcCsrNCd gP P s•d- --, mlm

(4.9)

The units of Equation (4.9) are dollars per unit time. This formula-

tion can be solved using either policy iteration or linear programming.

However, since all three formulations are shown to be equivalent in

the next section, this formulation will later be dropped because it is

more difficult to solve than the previous one.

4.4 Equivalence of the Three Formulations

The equivalence of the two formulations of the individual

optimum problem has already been shown in Section 4.2. This section

establishes the equivalence of the three formulations of the social

optimum problem given in Section 4.3. As such, it extends the

equivalence demonstrated in Section 3.4 for the one class model. For

convenience, only two classes of customers are considered, although

the method used generalizes to any finite number of classes. The

expected gain rate, g., for the Naor-type extension is, from Equation

(4.4),

2 2
gN(n) " , \'m(n)R- Cm L m(n)Sm-l m in m m

'.(n) denotes the gain rate for the Yechiali-type extension and gT(n)

denotes the gain rate for the third formulation. (Forced balking

points given by n - (nl, n 2 ) correspond to control limits nI - 1 and

n- 1.) g and gy(n) are developed using the notation of Howard
n2T

(1971) and both are shown to be equal to gN(n).
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I'9T()is developed first. Let yjij be the cost per unit time in
1

state (i,J), where (i,j) indicates that i customers of class one and

j of class two are in the system. Thus,

- iC + jC
yj1 2

Let bij ,, be the reward for a transition from state (i,J) to state

(i',J'). Here,

IR, i 'if i' -i+ l, J' j

biJij' - R2  if i' - i, j' j +i

0 , otherwise

Let TiJ i t j, be the expected holding time in state (i,j) given the next

transition is to state (i',J'). T denotes the unconditional expected

waiting time in state (i,j). Let X (i,j) be the mean arrival rate ofS~m

class m customers when the state of the system is (i,j). Here,

f ,if i+ J< nX (i,j) = m
m 0 otherwise

With this definition, T.. can be found from
ii

2
l/{I X(ij)} , i+j - 0

m-i
•ij2

1/{P +7 m(i,j)l , i+j 4 0

Also, the probability of a transition from state (i,j) to state (i',J')

. is

iFor notational convenience, all states, m, with o (m) i and
a 2(m) - j are combined into state (i,j).
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Xi~j) /(7 X~i.) +j C;i'-,j-0

2

X2(ilj)I() xM(i,J)} i + j -0; i' 0, j' I

+2

X2i~)/vi+ I X (ilj)} I

2 i + j > 0; it - 1, j' I j+1

ii/{J +~ ~i + j > 0; 1' + j' I iW j + 1

0 ,otherwise

r i is the expected reward per occupancy of state (i,j).

-- y P~j~riij + P P~i~ biwj
ijit j iw ~ j ii'l,

y ij~ij + ij,(i+1)j 1, +ij i(j+1) RP R2P

Let q. denote the expected reward per unit time in state (i,j).

q r /T +{ R + PR

ij ij ij yij ijI(i+1)j 1 ijli(j+1) 2 ij

- (iC I + jC 2) + X 1(i,j) R 1 + X 2 (i,j) R 2

From~ Hoad(90,g(n) can be written as

T -n iC~* ~ n) qijj (4.10)

i~j~n* 'J

SL



.57 •1

where 0 j (n) is the steady state probability that i customers of class

one and j customers of class two are in the system given that the

forced balking points are given by n. Thus,

&T(n) - ij (n)(- (ic 1 + jc ) + I (i,J)R1 + X2 (i,j)RX2

i+j n*

SI

0i (n)(iC1 + 11+ X R 0 (n)
i+j-n i+j<no

2 01

+ X R-ý1( .n '4.11)
2 .i+j<n 0

Equatlin (0.11) is juat Equation (4.9) expressed in slightly different

notation. Equation (4.11) can be rewritten as

~1 (n C L," (n) + X%[ I WR[> + XIc[n)R1 i2 1 1 222

2 2
XW -R (n)~)(n , m L m GO

Next, &y(n) is shown to be equivalent to GN (n). For this

formulation, the state space simply gives the number of customers in

the system. The cost per unit time in state i is yi 0 0. The reward

for a transition from state i to j is

L A ..... *.....
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C 2

"R- - (1 + l)Ci!i wiib probability X (i)'{ A (i)}

bbi'i+l 2

R (i + l)C 2 /p with probability X2 (i)/{ Xm(i)}W

and

b 0 0, j i+ 1
iii

Let Ti~j be the expected holding time in state i given that the next

transition is to state J. Ti denotes the unconditional expected

waiting time in state i. Let X (i) be the mean arrival rate of class m
m

when the state of the system is i.

Sif i < n
0A Ci) - m

10 ,otherwise

T is given by
2

1/{IX(i)} , - 0

2
llf + I m MI), i1 o

M-1

The probability of a transition from state i to J is

1 , i-cj l

2 2
-i m(i)/{j, + m r(i)} , i 0 O, j i + 1.

Pi,J

2
Ul/{ + (i) X iM 0, j - i- 1

Ml-1

0 , otherwise



59

Thus, rig the expected reward per occupancy of state i is

n*

r . -Pb b
± IMI j~ jijj Pi'i+l i,i+l

The expected reward per unit time in state i is given by

-ruT (P b

4i ii ~ili~

-X (i){R -(i + )C /P)
1 11

+ X (i){R - (i + 1)C2/W}
2 2 2

Assume, without loss of generality, that n 0 Again, from

Howard (1960),
n*

"" I i(0iG) q,
°10

a -1

n -1

10

0 2
+ R 0i(n)X2(R2 - (i + 1)C2/P}

i-on0 -1 n --
1 2IN 1Rl-o 1in X 12 R2 1t- 1i(n)

n -1

02- ¢IC,- (Al/P) (i + 1) 01(-n)

n -1
0 1- Cl11 (Xi /(i + 1) 0 Cn)

02

•.., , • . • .••,•,,.•;.• .•..:• i.?.,(;.• ,,•,, • .. . .•'. ,.-" •.- i.," -,A,
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ni -1
02

- C2  (X 2/p)(i + l)01 n)
1-0

Xt(-R + X (n)R 2

n -1
02

(X- {X(X 1 + X2)}C 1 fa 1 + X2 l)/P}(i + 1)0 (n)

ri-iO

010

n -
0o2

T t-2 ( 1(1 + 12)2)} {(Xl + X2)iU(i o + )iCn)i-o

n 0 i

-, Iz Gk,, 1/1) (i + 1) 0 1(-) (4.12)

i-nnn -102
0°1>

The term {-C1•i- (X /U)(i + l)0 Cn)} only appears if no- no + 1.

02

For a finite capacity 2MM/i queue, i+l (n) - (Xi/Ai+l)Ain if

0 i<n*; here, X- k (i)X m, p P i, and n* - mx{ }. Thus,
0MM i n i +1a i
o n-i m im o

2 02

gy(n) - I A'(n)R - {M /(X1 + I2c i o(i + 1)0 i+i
rn-i 1-0

n -10 2

- {X 2/(X1 + A 2)}C2 1 (i + 1)0i+l(n)
i-o

ri -101

-c (i + .) (n) (4.13)
02

n -
0

(i + 1)0i+l(n) - L(n), the expected number in the system. Thus,
i-o

. •.:.-",•.. .;.•...•.•.4;•• >•'• i ,• ,•• •••-•.,•,•.,>- <•.• i•; =•: 'i• •.-.•,. -•,,•, . •.•', . •• ... '. 4
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0 n -1i
0 01

2 1

xl/(x1 + x2)}I + 1)0l (_n) + C(i + 1)0l)
i-o i-n

0

is the contribution of class one to L (n) and

S2-1
{X 2x/(XI + x 2)1 (1 + l)0i+z6ý)

is the contribution of class two to L(e). Finally,

2
gy(n) I A,'(-)Rm - C1LG 22n

equivalnt, th eais to slvefoml ato,(n) wit its simpl

==1

2 2
X M' Rm C mL m(n)

M-1 M-1

This establishes

Theo•Fm 4.of tghe ) O a ) -Sol(u)i

Since the three formulations of the social optimum problem are

equivalent, (91 proves thro solve formulation, gy(n) with its simple

state space and the availability of policy iteration and linear

programming solution techniques, is chosen for use in this paper.

The solution techniques for this problem are presented in Sections

4.6 and 4.7.

4.5 The Form of the Optimal Solution

For the social optimum problem with one 'class of customers,

Yechiali (1971) proves that a control-limit policy is optimal. Also,

both Naor (1969) and Yechiali (1971) prove that the forced balking

point, n , for the social optimum problem is less than or equal to the
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balking point, n, for the individual optimum problem. The purpose of

this section is to prove that these two properties of the optimal

solution carry over to Model II. The following lemma is established

first and then used to prove that a control-limit policy is optimal for`4

several classes of customers,

Lemma 4.1: For the social optimum problem, reneging is

not optimal.

Proof: Suppose customer A of class m arrives at time TA

and joins the system. Later, at time T.D, customer A

departs the system before he is served. The actions of

customer A affect no customer who arrived before him.

The contribution of customer A to the net gain of the

system over the interval (T A` T D) is-C m(T D - T A) < O

his holding cost for the time he is in the system. If

no other customer arrives before customer A departs, his

actions have no effect on those customers arriving after

him. If other customers arrive during (TA, TD), the only

effect of customer A's temporary presence in the system

is to possibly keep a profitable customer from being

allowed to join the system. Thus, the contribution of

customer A to the system is negative when compared with

his not joining the system at all.

Theorem 4.2: A control-limit policy is optimal for each class.

Proof: Suppose that there exists a class m and a state i

such that in the optimal policy k (i) 1, but k (i1 1) -0;
m m
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that is1, the optimal policy for class m is not a control-

limit policy. The optimal gain rate is denoted by g*.

if 0 0, then a policy which is the same as the optimal

except that k m(i) -0 also yields g*. The case 0#0 is

considered next. Consider the following modification to

Model II. At the completion of a service, each customer

returns his expected net benefit plus his occupation costs

for the service just completed. The customers remain in

the order they arrived, but the administrator recomputes

the expected net benefit of each based on the number now

ahead of him and uses the given policy to decide whether

or not the customers can stay in the system. Because

there is no discounting, the gain rate of this system is

equivalent to that of Model II for the same policy. Since

the transitions are Markovian, all relevant information

about the future of the system is contained in the current

state of the system. (The state of the system must give

the position of every customer as in the third formulation.)

A customer of class m who had joined when i customers were

ahead of him would be forced to depart when the number of

customers ahead of him dropped to i - 1, since k m(i - 1) - 0.

Thus, the customer would be forced to renege. By Lemma 4.1,

the given policy cannot be optimal for the modified system

or for Model II.

The next theorem establishes the relationship between the

balking point for a class in the itidividual optimum problem and

-~ . a~ ~ ,-. . - T ~ IV
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the forced balking point for the same class in the social optimum

problem.I

Theorem 4.3: For each class m, no- n .

m m

Proof: First, the decision made by the administrator for

a given arrival does not affect the times of arrival of '

any customer yet to arrive. As previously shown, n
m

satisfies

R - (n +l1) C /p < oR *--n C /i. (4.14)
m s m m s m -m M

Suppose a customer, customer A, of class m arrives to find

the state of the system i n s. Let T A be the time of
S

arrival of customer A, and T B be the time of arrival of
the next customer, customer B. In view of Equation (4.14),

let a < 0 be the expected net benefit of customer A joining1

the system. If all expected costs and rewards are assigned

to a customer upon arrival, the contribution of the interval

(TA TB) to the expected net gain is a < 0 if customer A is

allowed to join. The decision regarding customer A does

not affect the expected net gain of custome-,-s who arrived

before him, but it does affect the expected net gain of

those arriving after him. If customer A does not join, the

state of the system found by customer B and all othersI

after him is less than or equal to the state of the system

if customer A joins. Since f m(i) - R m -(i + 1)C m/V, the

expected gain for a customer of class m joining when i are

in the system, is a strictly decreasing function of i, the
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contribution to the net expected gain of the interval

(TB, TC) for any TC > TB is at least as large when

customer A balks as when he joins. Thus, if i - n ,
s
m

forcing a customer of class m to balk yields a larger

net expected gain or gain rate than allowing him to

join.

Theorems 4.2 and 4.3 suggest a simple-minded approach to finding

the optimal policy. Since a control-limit policy is optimal for each

class and since the control limit is bounded by n -1 for each class m,
m

a multidimensional search technique can be used to find the optimal
M

policy from among the n (ns ) possible policies. In each of the next
m-l m

two sections, a more efficient solution technique than the suggested

multidimensional search is described.

4.6 Policy Iteration Solution of the Social Optimum Problem

Equation (4.6) represents the optimum gain rate for a continuous

time, infinite horizon, undiscounted, semi-Markov decision process with

a finite state space. The policy iteration algorithm of Howard (1971)

(see Algorithm C.1 in Appendix C) will be applied to a small two class

problem to illustrate the method. A semi-Markov decision process is a

semi-Markov process over which a decision maker, here, the administra-

tor, has some control. The control arises from the ability at each

transition to change the probability distribution for the next transi-

tion of the process. Here, the control is carried out by choosing the

classes of customers that will be admitted to the system. Ignoring,

for the moment, the form of the optimal policy demonstrated in the

previous section, the administrator must choose from among 2M

-----.--.----:- - - - - - -
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alternatives at each transition. However, since the transitions are

memoryless and since a steady-state exists and is of interest, the

decision as to which classes to admit only depends on the number of

customers in the system. The expected net benefit rate of the system

is influenced in two ways by these decisions:

1) The expected net benefit of the next transition depends

on the classes of customers allowed to join the queue.

2) The expected time before the next transition depends

on the classes of customers allowed to Join the queue.

A solution to a two class example is now obtained by policy

iteration to illustrate the use of the technique. In this example,

class one customers receive a reward for service of R1 = 3 and pay

C1 - 4 for each unit of time spent in the system. The arrival rate

for class one is X1 - 2 customers per unit time. Class two customers

receive R=2 2 for service and pay C - 3 for each unit of time spent

in the system. The arrival rate of class two customers is X2 - 4
customers per unit time. The single exponential server has a service

rate capability of p - 4 customers per unit time.

From Equation (4.1), n - 3 and n - 2. Thus, from Equation

(4.2), n* - 3. The set of all possible actions or alternatives con-s

sists of {k: k - (0,0), (1,0), (0,1), or (l,1)}. To avoid a trivial

system, k(O) # (0,0); that is, if the system empties out, customers

must be allowed back into it. Also, Theorem 4.3 implies that

Ik(3) - (0,0) and k(2) - (klO).

P(0,0) is the matrix of transition probabilities for alternative

k - (0,0).
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To State

0 1 2 3

P(0,O) - 0 . . . .

1 1 0 0 0

From 2 0 1 0 0
State

3 0 0 1 0

The dashes indicate that action k - (0,0) cannot be chosen when the

state of the system is 0. For alternative (0,0), the next transition

is sure to be the completion of a service. Transition matrices for the

other alternatives follow.

To State

0 1 2 3

P(l,0) . 0 0 1 0 0

From 1 0.67 0 0.33 0
State 2 0 0.67 0 0.33

3- - -

To State

0 1 2 3

P(0,1) - 0 0 1 0 0

From 1 0.5 0 0.5 0
State

2 -

3

|!I
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To State

0 1 2 3

P(1,1) - 0 0 1 0 0 i
1 0.4 0 0.6 0

From
State

To see where the entries come from, consider the row corresponding to

state 1 of P(1,0). The transition rate from state I to 2 is given by

i - 2. The transition rate from state 1 to state 0 is given by the

service rate 11 - 4. Thus, the total rate out of state 1 is 6 and the

rate from state 1 to state 2 provides 0.33 of the total. Thus, the

probability that the competing rates yield a transition from state 1

to state 2 is 0.33. Similarly, the probability that the competing

rates yield q transition from state 1 to state 0 is 0.67.

Let b(0,0) be the matrix of expected rewards, for the various

transitions under alternative ký (0,0).

To State
0 1 2 3

b(0,0) - 0 - - - -

1 0 0 0 0From
State 2 0 0 0 0

3 0 0 0 0

Alternative (0,0) yields no benefits since no customers are allowed to

join the system. The expected rewards for the various transitions for

the other alternatives follow.

k _4
A. .
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To State

0 1 2 3

b(1,0) 0 0 2 0 0

From 1 0 0 1 0
State

2 0 0 0 0

To State

0 1 2 34

b(0,1) - 0 0 1.25 0 0

From 1 0 0 0.5 0

State 2 . . . .

3

To State

0 1 2 3

b(1,1) - 0 0 1.5 0 0

1 0 0 0.67 0From

State 2I
3

The entries bii+ of b(l,l) are found from
1 M /(1 + X 2)}{R - (i + 1)C 1 /P1} + {X2/(X1 + X2)}-R2 - + •2/111

The components of the vector of expected rewards per transition

for alternative k are found from

n*
Sri(k) P (k)

j-o i,j

JM-J
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For this example, the expected reward per transition vectors are

r(O,0)- - ,r(1,0)- 2 , r(0,l)- 1.25 , r(l,l)- 1.5

0 0.33 0.25 0.4

0 0

0 - .-

The components of the vector of expected rewards per unit time

in state i under alternative k are found from

qi(k) - r i(k)/T i(k) •

Since T(k), the vector of expected waiting times under action k is

required, it is given below for the various alternatives,

"T(0,0) - - 'r(1,o) - 0.5

0.25 0.167

0.25 0.167

0.25

T(0,1) - 0.25 , r(l,l) - 0.167

0.125 0.1

Thus, the expected gain per unit time vectors are

M* Lix
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•'(O~J) - , q(1,o) 4 q(o,1) - 5 ,q(1,1) = 9

o 2 2 4

C, 0 -

0

A aetqun~ca of constants, (vi, 1rir 1 0, ~ n', referred to

by Howard (1971) a@ the 'eati,ve value of the Ayatom starting out in

Pta toij l 'aquiroti to aLart the polw i£teration algorithm. Au he

iugu rtuo, taka v 0 tr a1l i. These values aro. than used in the

poleuy detue•.natiou poA, Loii of the algorithir which i,w given by

•qu~tlo (4,1l)

u ( 1) ( '4 L (,) + {•to4(k)) o p' ,J(l )v~ i - vI ) ) . (4 . 15 )

TIkV Nuto UV ih) ivam the Vpolicy chowus fuor 4ppl'at tiou h of tht

L.Ijoil~lm IPUVthim*X I) u

(1 , 0)

(0 ,0)

'1.1 u'4 W1auu MO, 010 "ILutIv" vluea V 11Lduti1tui out; 'lt totAte i, vV, aj lowl

041A , awt av.•O 'it al, Vi at'A mat t•qwt , to zuvu, rhi ,m tn'fw r~w~iontm , I ,m i t

w'ia t~hu a~dmuioilt,[a a Lov vi tt)l no 1o I)LO HUMt (IM l~'•l ho • Jhit'., Ot1 t~o 111Vt

iudividual (.i.wAuw p'obLuem which im g ivuit ty d k 1) Aa th0 pul.i:y
I'

•, id ii)LL..J~W~l*.II ~ ~ Aw - i " " ~
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iteration algorithm is applied again and again, better knowledge of the

vi's results so the administrator can do better than the individual

optimum policy.

The gain rate and relative starting values associated with policy

d(l) are then computed In the policy evaluation portion of the algorithm

given by Equation (4.16).

For i - 0, 1,..., n*,

n*
Sgi(d± (h))+vi" ri(d1(h)} + • Pi'j(dih)}vJ " (4.16)

In Equation (4.16), g is the expected gain rate of the system under

policy E(h). Setting v to zero reducma the number of unknowns in

Equation (4,16) to the number of equations and yields a solution vector

v whose entries are values relative to v - 0. Solution of this

system of lins•i equation when policy 7(l) is used yield.

S- 2.553 and (vi} (2.67, 1.60, 0.64, 0)

Thig new met of v 'd is used to begin the second application or

stage of -he policy iteration algorithw. For thi new met, Equation

(4.15) yields

"0 (2) - (1,1)
i, (1,0)

(0.0)

(U ,0)

dlv~l~tiu• i ofU polley T((2) g:Hiv"u

#A/-i
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g - 3.692 and {vi} - {2.73, 1.85, 0.92, 0}

This new set of vi's leads to termination of the algorithm because

d(3) - d(2). Since the maximum i for which kl(i) - 1 is one, nol 2.
0

Similarly, n - 1.02
i2

4.7 Linear Programming Solution of the Social Optimum Problem

The formulation of the social optimum problem given by Equation

(4.6) is transformed into a linear programming problem in this section.

As in Section 3.5, the approaches of Yechiali (1971) and Fox (1966) are

combined to yield the formulation given here. The linear programming

formulation will be developed first. Then, the example of Section 4,6

will be set up as a linear program.

Since n n* for all m, only states 0 through n* call have

positive steady state probabilities. A policy P*CC is sought such that

n* 1 1

max i-o ki=° kmn(
P Pec (4.17)

oko= iD (k) T (k)
i-o k i-o jO

Equation (4.17) is just Equation (4.6) written in a slightly different

form. First, recall that in Equation (4.6), D (k) was dropped ba-uuma

k (i) curried the samu information. Conversely, ks(i) is dropped hare

in favr of DP(k) acund, in 1lquuLiao (4.6),

fl

1) (kv)L Xf fit ,+ 1) W

in juust qc(k), lI expiL.tud &uill pct- uinit timw ill statu i whoil actiull k

ii choetmn Under policy 11 Itnweverl, q,(k) , ri (k)/ih (k)i I quation
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(4.17), the rM(k) and T (k) terms are summed separately, then divided,

as opposed to Equation (4.6), where qi(k) is formed first. Equation

(4.17) is the expected gain per transition divided by the expected time

per transition which is indeed the expected gain per unit time. The

balance equations and normalizing equation which the steady state

probabilities {0iD (k)} must satisfy are

n* 1 1s 1 P P(TP (71
0. D(k) P - ... D (k) - 0

imo klo 1-o JkM- kmoI

for j -0, 1, ... , n* - 1

(4.1$)

and

1n*

O P(k) -1 (4.19)

J-o klno k1 -o

where -i 0 and 0. With the results of Fox (1966), s

demonstrated in Section 3.5, the linear program with fractional

objective function given by Equation (4.17) through (4.1)) iW

equivalent to the following linear program:

I- "U 1, ~ i IN1.,x~ .. ( • j ,,k (420
&subjuct to '

i- •4-o (Iw - , , j( - 0

1 I
j 0, ,.,, U*s - 1 (4,21)
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and

s 1 1

" (k)Tiik - 1 , (4.22)
iwo k -o k i0

1 M
where

P(k) 0D() -0 (4.23)
p* -

Once Equations (4.20) to (4.23) are solved, DP (k)can be found

from

D- 1 1) } (4.24)
1 1.
k- k No

Fox (1966) shows that Di% (k) - 0 or 1 and at root n* + 1 of the Di ( I
are 1. Thus, 0, can be found from

p*K

K yi(k)iL(Z) fol: Yq ) > 0 (4.25)

The scriai balklnS point for each claus m can be fouind from

I + may, U Yi(kc ,.., km l, ,1 ki+l, ... , kM) > 0}

L (4.26)

The optimal Sain rate of ,i;e oyutam ii SiLver' by the maximum value of

EquAtion (4.N.20). iuwEquurtcoas (4.20) to (4.23) coiwtituttu the

' •formulation of an al~aroate iiolut,-Jion ovihniqu,1 to policy it~aration for

t~hi social optimum problato of Modal 11.

ho datar for, tho exappW 'roblum of Suction 4.6 are vopntod

below in rTb•o 4.1,

I•.
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TABLE 4.1

Two Class Example Problem

Class R C X
m m m

1 3 4 2

2 2 3 4

The single server provides exponentially distributed service times at a

mean rate capability of four customers per unit time. n* was found toS
A

be three. P(k), r(k), and T(k) which were also found in the previous

section are repeated below for convenience.

0 1 2 3 0 1 2 3
P(0,0) -0 - - - - P(110) 0 0 1 0 0

1 1 0 0 0 . 0.67 0 0,33 0

2 0 1 0 0 2 0 0,67 0 0.33

3 0 0 1 0 3

0 1 2 3 0 1 2 3
P(0,1) 0 0 1 0 0 r(l,I) 0 0 1 0 0

1 0.5 0 0.5 0 1 0.4 0 0.6 0
12 2

3 3

r(oo) w - t,,i) . 2 r(0,i.) 1,2.5 1.5

0 0.'3 3 0,3,5 0,25

0 0

0 -

S. . .. . .. ;,. . . . . . .,u .;J, .. ,, , . .... , , . .. , i. ,. *t1..••t; i , , i.,• , • • . .... . . . .. .••L
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T(0,0) - - T(i,0) - 0.5 T(0,1) - 0.25 T(l,l) - ( 0.167)

0.25 0.167 0.12S 0.1

0.25 [0.167j

0.25 -

i'Using this information, the linear programming formula~tion in Equations
(4.20) to (4.23) for the example problem is

max 2y0 (l,0) + 1,2 5 y0 (0,1) + l,Sy0 (l,l) + J.33y (],0)

+ 0.25YI(0,l) + 0.4y1l,1)

subject to

y1 (0,0) + 0.67Yi(i,0) + 0,SY (0,1) + 0.4y,(4,l) - y0 (1,0)

-y(0,7) - y004) - 0

Yo(lO) + Yo(0,1) + yo(1,1) + y (0,0) 4' (.67y2(1.0)

YI(,O ) - Y1 (3,O),Y) .' YCI(0) yl.

pf

0, 33y (I,) + 0.5y,(0,1) + 0.6yj (1.,) 4 y3 (OO)

- y (O,O) - y2 (1,0) -

-O.y 0 (l,O) + 0,25Y0 (0,i) 0,1 6 7y0 (11) 4- 0,2.5%(O,0)

+ 0.167yl(LO) 4, 0,125y 1(0,i) 1 Q,.,y(ll)

+ 0.2 5y2(O,0) 4- .167Y 2 (1,0) + 0,15y3 (0,0)

• whei•i yt(k) i o,
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The uptimal solution of this linear program is yo(l,l) - 1.85,

y (l,0) - 2.27, y2 (0,0) - 0.92, and all other y (k) - 0.0. The

maximum value of the objective function is 3.692. From Equation (4.24),p, 0.62 02oth
DO (1,1) D1  (1,0) - m~(00 - 1adllohrD(k) - 0.0. Fo

CP* Pand2*
UI Equation (4.25), 0 0.308, 0l 0.462, and 0 0.23. Finally,

0 21from Equation (4.26), n 0 2 and n 0 1.

4.8 Conclusion

Model. I has been extended to allow for several classes of

customers. The i;haracteriatic, s of the optimal policy are found to

carry over to this extended mode]., Model I1. A control-limit policy

for each class of customers maximizes the expected net beaefits per

unit time. Compared with the wocial optimum, self-optimizing customers

of each claso tend to overcougese tht0 system.

Of' the throe formulatLiun of tLhe social opt~imum problem that areI

proeusntd., tho ona that asaigni all li.xpectvd coma and rewards to a

c wu~ om ar 4t the tim e of hiia ant ry intuo Wy~ to'11 is Ot as •i' sie ut to

solve. Two solution trk lulques, policy Iwratlton and linear p-ogramming,

are prilNc'ot:od Aifld Lllus tratod,

If



CHAPTER V

ERLANG SERVICE TIMES

Now that the restriction on the number of classes of customers

has been elimina~ed (see Chapter IV), the assumption of exponential

service times which is not very satisfying in the context of an airport j
landing queue will be relaxed. The Erlang density which allows more

flexibility than the exponential in approximating an airport's service

time density is introduced. Model III extends Model II to include

Erlang service times. Finally, the chapter explorces two methods for

solving Model II1, one through policy iteration, and the other through

mixed integer programming.

5.1 Thu Erlang Density Function

The followitig introduction to the Erlang donsity is adaptod from

Gross and ilarris (1974). The Erlang dunsity furction is a subset: of

thu gaumtia dutisity. Recall that

EW(x) - (ll{P(x)-) ux'j1 uxp(-xII) ifor 'ý,13 > 0 atid 0 • x <

is the guinuu density functiot, N'(A) f- x xc(-x)dx and itXp(.)

ruruaaQruaisd to hu oo If f (x) it4 tho dollsity funcetion

of A randont variable X, thon X,(M) - • and Var(X) - if" 2, 'l'ue rhinai

deoi•ty is a gamma wi I i u h and i W 1/ (/(hI) , whoio 1 = 1, 2, . and

1 > 0 14 a cunatmn. Thuts, i1 Z haa an Ilt.anZ dunaity,, thn,

(,) ( 1/(h - 1) hi( IIZh h-I Vxp(-,hj1z) , V ,
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Also, E"Z) - I/P and Var(Z) = i/(h 2). The graphs in Figure 5.1

demonstrate the increase in modelirg flexibility of the Erlang density

over the exponential density function. (Note that if h - 1, the Erlang

density is an exponential density.) The effect on the Erlang distribu-

tion of increasing the value of h while holding the mean constant is to

reduce the variance of the distribution.

To extend Model II in a straightforward manner requires a service

time distribution with the Markovian or memoryless property. Of the

continuous distributions, only the £xponential is memoryless, so the

usefulness of the Erlang distribution may at first appear doubtful.

However, the mozent generating function of the sum of h independent,

identically distributed, exponential random variables with parameter 0

h h
is {0/(0 - t)}h, This can be written as {hp/(hp - t)} which is the

moment generating function of an Erlang random variable Z with

E(Z) - 1/p and Var(Z) - I/(hp 2 ). Thus, an Erlang random variable Z I
with parameters h and ii can be generated by the sum of h indepetident,

identically distributed, exponential random variablim each with niere

i/hpi. The technique usod to introduce Erlang service times whilk%

maintaining the minmo'ylesa property Is to artificially break a servicea

up into h Indupendent, idntioully diiwtributed, expoucuttikl phases.

Of course, only oni customur is allowud in tiervicu at- any onQe tine.

The phusew are ituposod for tho convotlence of r[athilInalicol tractability

and do not necasaarily roflout any attributos of Lhu uctual, sgrvicu

proaw. To accoiwnodatw Erland uorvice, timeo, tho etiate apaco of thI

modl, is oxp11fldUd to illd cati; thl umuiwe of' phaw of aarv:itct ii th,

systemll. If Ulhu bJvotIll contM•a oi i can u tLonvr, hoe aLuta of th. niyltoiii
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can be i to h. If the system contains two customers, the state can be

h + 1 to 2h. In general, if the system contains i customers, the state

can be (i - l)h + 1 to ih.

5.2 One Class Example Problem

A simple problem is presented prior to the presentation of

Model III to illustrate a potential problem that may arise so that the

s problem can be avoided. Consider a single class of customers with the

reward for service K - 3.5, the cost per unit time in the system C - 4,

the arrival rate X - 2, and the mean service rate capability P - 4.

Suppose that an Erlang 2 distribution provides a close fit to the actual

service time distribution. Then, each service can be assumed to consist

of 2 independent exponential phases, each with mean time l/(hlj) - 1/8.

The individual optimum problem for this example is examined

first, Each customer's expected service time only depends on the mean

service rate which, in turn, does not depend on the form of the service

time distribution. However, the calculation used previously for the

expected time a customer spends in thu system depends on the mamoryloss

property of the service time distribution. Although this difficulty

precludes finding the balking point for Erlang distributed service

times in terms of the number of customers in the system as ua~tly as

bufors, th• balking point can be found in terms of! the number of phaaut4

of service in thu system since Lhe length of ea1kh phase of service is

an uxponantial random variable, Lot u' be the individual optimum
a

balking point in tarms of number of phiaser of uervicu in tVho systUm.

11' iW sutc,.h that

1- (,C + / ) < 0 it (' - 1 + h)C/(h1),. (5.1)

ft. A
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Thus,

S- [Rh-IC] (h - 1) (5.2)s

where the brackets represent the greatest integer function. For this

example, n' - 6. This policy implies that a self-optimizing arrival
s

will balk if he finds three customers in the system and the customer

in service is in the first phase of service. If three were in the

system and the customer in service were in the second phase of service,

the arrival would join the system. Since the phases of service arg

purely artificial and indistinguishable, this policy cannot be

implemented. Thus, while the individual optimum solution may turn out

to be one that can be implemented, the possibility exists that it may

not be implementable. This uncertainty casts doubt upon the usefulnuss

of this formulation of the problem. Thu same difficulty can occur in

thi solution to the social optimum problem.

Solution of the example for the tociatl balking poliu in turtitu of

phatias of wervice by policy ituration or linuar prouramming luade to

the forced balking point occurring when four phausus of surviceu are

presunt in the system. Since the 8ervicu time dintribuLtoti is 1,',rlung

Lwo, •t• forced balking point occurs whnti two customerru aro Lh tho

system and the cuuom•tw' in servicu ia Ln hitu firnt phaue of aervie.,

Ahain, sineu Lite phases are not actuattlly preUusen in thu swtrvicu itself,

this policy, though optimal for tile modedol, 1,1 aot1i t toint- atd impot111td 1
to itplumant.

T'his axanmp.lu uinphasi.'AU tho fac&~t that an fimpq)l, Lutabu policy

1atUU be one thu t dooti rnot L foroc 14n 1r I.vtI 1. or' tH10u adi lI 1.4 1 n : aint ' LtO

deatermine the torvitiw phase of the uusLutomt in uutrvlc1, ooa-l.1. tim t a

ILi
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policy is a siet of join or balk decisions for each class of5 custouwer

for each state. of the system. The set of all possible policies, thu

policy space, contains policies that cannot be implumunted. The

policy space can be reduced to only those policies th~at choose the

same action (the same join or balk de~cisioni for the clavwue) for aill

4 states representing the presence. of the same number of custaomrw.

Such policies are implemunt ablo becituou thay do not raquiru din arrival
4

or the administrator to identify thlQ survice phuas uf thea cugtomer in

sarvice. Implemaintablu policius will also bu rofervid to t-.d lit.ikou

policies since the actious chosen for altl wtaites rupeumLinAg thi

presence of the same number of kC'i~t()IiIuI mtoiL~ bi th4AHtiw

Model III hus M classesw of Cuustwoer, Thu avivulu Vur eauch

cls i forml a 11oi~soll HN "01111 with Ilml anito 'M The evice t Uiw~ of~

0141 Winlll Servur are indoputid'411, idutiLiw.lly JiaLLJAJuLeu, 1611i ng

timel iw guimuerud by Ulu sum of 11 illduputndi~ii, idullLicua ly d LWsL iLhuLwd,

randou :: iablu waithm vavabl / i an olloll W1.01 11 (hhi ) I''ie Li I oV

fur Model III lai eXpianded to ituld~ioat hu iwilumbtv Of pli~igwH of' iurvk-

iin the uystemi Phasesu (1 1 )11 1 Lu ih1 12uLrua~lftL hu L'inWutuuuu tit 1

CUNustomeiu, whegre i w1, 2, 0 * Thu fo LlOWilg COWL mti-uL2Luvu tw

WIMHOI)U oil 1.1to oporlo71Il OfI LIIw Ue LjUU1U WyI4U~lII

1) E11011i OuLUmullr Of 0.1,444 111 0I1"L IN ~Uinvud rueu ivui a4

2) VWULd Of 1ýdollavu,
2) aCh i t ofI L 0I tfi II It a 0111U III c(IWL0ULo Iw' 41We tid i t. 1 LwI

syte oWLU 11111 C IIdo 1l.IL'Li
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To avoid triviality, R C /U.
m m

Again, for this model, each arriving customer is given the

choice of joining and being subjected to the cost structure or balking

and not paying or receiving any money. Both the individual and social

optimum problems are considered. Since only the state of the system

upon arrival is used to decide whether or not to join the system,

only the class of stationary Markovian policies, Cs, is examined for

the optimum. To avoid coming up with a policy that cannot be imple-

mented, the decisions for all of the states corresponding to the

presence of the same number of customers must be identical. Therefore,

as in Model II, let D be the probability that decision k is chosen
Dik

under policy P i:hen i customers are in the system. Decision

k - (ki, k2 , ... , kM) accepts class m if k - 1 and rejects class m

ifk -0.
m

5.4 The Individual Optimum Problem

The solution of the indivi',ual optimum problem will be investi-

gated first. The method of phases will be used to learn as much

information as possible about the solution to the problem. When this

method runs into difficulty, other methods will be used to finally

determine {n I for m - 1, 2, ... , M.
Sm

First, remove the restriction that all decisions made for the

states representing a single customer be identical. As in Section 5.2,

n', the optimal individual balking point for class m in terms of
m

iAgain, using the state of the system is the best a customer
can do since the transitions are memoryless and the horizon is
infinite.
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phases is given by Equation (5.2) as

tS

n - [RhP/ - (h- i)
m

This balking point in terms of phases may translate into a balking

A point in terms of customers that cannot be implemented. If this

4 happens,' n , the individual balking point for class m in terms of
sm

L.-le number of customers in the system, is either [(n' + h - 1)/hi

or [(n' + h - l)h] + 1. That is, n is either the last complete
S

u m m
customer represented by n I or one more than that. This is really

m
enough information if the individual optimum is only used to bound

the state space for the social optimum problem. (In Section 5.5, n ,

the social balking point for class m is shown to be less than or equal

to n .) The larger number of customers, [,(n' + h -1/l+ 1, can
s m Tm -)h

serve as the bound for each class. The individual balkii.g point for

each class can be found, if desired, by different means. [1
One method of obtaining the individual balking points is an

extension of the approach used in Naor (1969) for Model I. A self-

optimizing customer will join the system if his expected net benefit

for joining is greater than zero which is his expected net benefit for

balking. Since Rm > C /P,~ [Wn + h - 1)/h] ý ,so there must be at
m

least one customer in the system for an arrival to consider balking.

For each customer in the system but not in service, the expected

service time is 1/i. The difficulty with Erlang service times is that

the expected remaining service time for the customer in service is not

hi/ since the Erlang distribution is not memoryless. Thus, the problem

is to find the expected remaining service time of the customer in

service. Since the arrivals for each class form a Poisson stream, anL '
4

i.
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arrival is equally likely to occur at any point during -

Following Kleinrock (1975), the expected remaining service time found

by an arbitrary arrival is

E(Remaining Service Time) -E(RST) ( (S) + Var(S)}/{2E(S)}

(5.3)

where S is a random variable representing the complete service time of

a customer. For Erlang service times with E(S) - 1/u and

2
4--- ' Var(S) - 1/hp2), Equation (5.3) becomes

E(RST) = (h + 1)/(2h.)

The individual balking point in terms of customers can be found from

R - C {n /p + (h + l)/(2hp)1 < 0 - C {(n - l)Ijm m

+ (h + l)/(2hp)} (5.4)

This leads to

n " [Rm/cm + (h - 1)/(2h) , (5.5)
m

where the brackets indicate the greatest integer function. The set of

individual balking points determined for the classes by Equation (5.5)

solves the individual optimum problem.

Equation (5.5) can also be developed using an extension of the

approach of Yechiali (1971) for Model I. Since each customer considers

only his own net benefit in deciding whether or not to join the system

and since all customers of a given class face the same cost structure,

each member of a class makes the same decision when a given number of

iI

S!-
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customers is in the system. Thus, a policy P*eC is sought such thats

P* yields

0 M
max Dp(k) k (i){R - iCm/ - Cm E(RST)}

s i-o rm-i

S~M
+ D (k) k k(0)(R -C I/u) (5.6)

rn-i m

The units of Equation (5.6) are dollars per customer so it maximizes

the expected gain per customer for self-optimizing customers. Equation

(5.6) is analogous to Equation (4.3) in the extension of Yechiali's

formulation to Model II. Again, D (k) is the probability that decision

k is chosen under policy P when i customers are in the system.

k (i) - 0 if class m balks when i customers are in the system, and
m

km (i) - 1 if class m Joins when i are in the system. Equation (5.6)

can be maximized by setting D (k) - I for all i and all k and setting

1 if R m- iC / - C E(RsT) > 0

.0 otherwise, for m - 1, 2, ... , M.

The arguments in the previous development can now be used to develop

Equation (5.5). Then,

1 I if i < n
k_(i) =
m 0 otherwise, for m - 1, 2, ... , H.

An interesting twist to the normal pattern of development used

in this paper provides numerical results to confirm Equation (5.5); in

particular, to demonstrate that ns can indeed be [(n' + h - 1)/h] + 1.
m m

As noted in Lippman and Stidham (1977), the difference between the

self-optimizer and the social optimizer is that the self-optimizer

i-~-.~
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fails to consider the decrease in benefits to later arriving customers

caused by his joining the queue. This effect is called an external

economic effect. Although Lippman and Stidham investigate systems

like the M/M/s system, the external economic effect applies equally

well to Model III. As X - 0 for all m - 1, 2, ... , M, the effect of
m

a given customer's decision to join on later arriving customers

declines since the expected interarrival time between customers is

large compared with l/p, the expected service time. Thus, it seems

reasonable to assume that as X -o 0 for all m - 1, 2, ... , M, n
m om

approaches n from below (the next section establishes n - n for
s 0 s

m m m
all m). The twist is to find a social optimum problem for which

no" [(n' + h - 1)/h] + 1, which implies that n is also
m m m

[(n' + h - 1)/h] + 1.
m Using the policy iteration method (see Section 5.5) for solving

the social optimum problem, a simple example was solved for which

n o - [(nm + h - 1)/h] + 1 for some m. In the example, a single
m m

class of customers is given a reward R - 3.99 for service and charged

C - 4 per unit time spent in the system. The service time distribution

is modeled as an Erlang 2 distribution with each phase of service

having a mean service time of 1/8. The arrival rate of the customers

is 0.4. From Equation (5.2),

us- [Rhu/C]- (h-1) 1 6.s

Thus,

[(n' + h- l)/h] - 3

and

W(n + h- 1)/h] + 1 - 4.
S.

- -' <'VA
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From Equation (5.5),

rk - C + (h- :l)/(2h)] - 4

The policy iteration method of Section 5.5 applied to this problem

yields n - 4 which implies that n s 4 and confirms the result of

Equation (5.5).

5.5 Social Optimum Using Policy Iteration

A policy iteration approach to the social optimum problem is

considered next. With a few minor modifications, the proof of Theorem

4.3 can be adapted to establish that n 0 n , for all m, for Model
m m

I11.1 Thus, a bound on the state space required for policy iteration

can be determined from Equation (5.5) through

n* = max {n } . (5.7)
s m sm

A policy P*ECs, the class of stationary Markovian policies, is sought

such that P* y: f-lds

n*
max max 'P~-

PC P PC (PmO 1 k(i)mX{R - iCm/- Cm E(RST)}
Pec m - -

+ D 0 % -l k(O)X (R - c P) .(5.8)

SThe units of Equation (5.8) are dollars per unit time. As in Models I

and II, the main difference between the formulation of the individual

and social optimum problems is that the social optimum formulation

iSince the optimal policy has not been shown to be a control-
limit policy, n needs to be redefined as n - 1 + max{i: k (i) - i}.O O m
n will still be referred to as a balking puont.

m

, • " ;.;.,-•.•.• -': =.• : ;4,.'.: .:; " .•$f 2:; •:" -=- -'e • ,,; L ..-. , ,.
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includes information, here, 0 i that allows the administrator to

anticipate net benefits from customers who have yet to arrive.

According to Derman (1962), a nonrandomized rule PeC maximizes
d

Equation (5.8). Thus, Di(kP) can be dropped from Equation (5.8) since

it will be one for the decision chosen for each i and zero otherwise.

Equation (5.8) then becomes
n*

(S Mmax D a s•
pa•x c1.d k (i)X {R - iC /y - C E(RST)}

PC.sd i-i - 1 m-l m m m m

P }

+ 01 k m(O)Xm(R - Cm/V) (5.9)
m-1

It should be obvious that if Equation (5.9) works for Erlang service

times, it works for any general service time distributl.on with a finite

mean and variance since E(RST) can be found from Equation (5.3).

However, Equation (5.9) cannot be solved by the techniques at hand

since in the formulation in Equation (5.9), the problem is not

represented as a semi-Markov (or Markov) decision process. To

demonstrate this, consider that if the system enters state i from

state i - 1, an arrival has occurred and Ti, the expected waiting time

in state i, is E(RST), while if the system enters state i from state

i + 1, a service occurred and the expected waiting time in state i is

1/U/, the expected service time. Unless the service times are expon-

* entially distributed, E(RST) # 1/V. Thus, another approach is required

to solve the social optimum problem.

The inability to solve Equation (5.9) using the techniques

developed leads back to the method of phases. The social optimum

problem without the restriction requiring the same decision be made for

.............. .......... ....... ....... ..... ...............,.... •,-" -
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every state representing the presence of the same number of customers

can be written as

hn*
max sM
PEC gP I o D.(k)0 I k(j) X{R - (j + h)Cm(hp)}

s j-o rn-im m
* • (5.10)
IP

Again, the results of Derman (1962) imply that D can be dropped

from the formulation since a nonrandomized rule is optimal so that

Equation (5.10) becomes

hn*
max max s P M9J Wo~j k QJ)X {R -(J + h)Cm/(hp)}
PECs Cd 8P Pec srC d .0 m-i) m m{m +

., (5.11)

This is the same formulation that led to difficulties in Section 5.2;

that is, the optimal policy may be one that cannot be implemented

since it may require arrivals to identify the service phase of the

customer in service.

Since linking decisions places additional constraints on the

problem, the op'..-v-1 solution to the "linked" problem yields a gain

rate that is no greater than that found by solving Equation (5.11).

A simple way to find a good linked policy is to use the following

algorithm:

Algorithm 5.1:

a) Use policy iteration to solve Equation (5.11) for g

and n' for all m, where n' is the optima-l forced
O0 0balking point in terms of phases of service in the

S~system.

b) If the optimal solution can be implemented, stop. If

not, go to Step (c).

" ' i i - - ,• "•" vt1"m ' • .. ------- :•-----" .... •
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c) For each class whose balking point occurs at the last

phase of a customer's service, fix no [ (n; + h - 1)/h]
OM mFor the other classes, n is either [(n' + h - 1)h]

0 0

or [(n' + h - 1)/hi +1.
m

d) Among all possible sets generated from Step (c), find

the set (n 01, m - 1, 2, ... , K4, of balking points that
M

yields the maximum gain rate.

This procedure is fairly easy to implement, although it may require use

E of the policy evaluation porcion of the policy iteration algorithm on

M
2 policies in Step (d). Howeve-7, it may not find the optimal solution

since it searches only a few linked policies in the region of the phase

optimum. In fact, the few policies examined are control-limit policies.

(Although the proof of Theorem 4.2 does not directly apply to Erlang

service times, it seems reasonable to assume that- the optimal policy

will again be a control-limit policy.) A more thorough search of the

linked policies lends itself to a mixed integer programming formulation.

5.6 Social Optimum Using Mixed Integer Programming

This section extends the phases of service formulation of Model

III so that all possible linked policies, policies that can be imple-

mented, are examined to determine the optimal policy. Recall that a

linked policy mikes the same decision for all states that represent the

presence of the same number of customers.

Equation (5.11) represents the social optimum problem in terms

of phases of service in the system with no restriction on the decisions

* made. Equation (5.11) can be formulated as a linear program similar to

that developed in Chapter IV [see Equations (4.20) to (4.23)].
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hn*

s I 1

mnyY l (k) ri (k)
i-a klk.O kmo -.i

•.,'•',.subject to

J 0 , 1,.., (hn* -i

hn*s1 11

[ .. Yi(k)PTi(k) - i ~k

i-o k1 -o k__-o Y Ck 001 . (h 5.-12)
si 1

io( k-a k-a.12

hn* bounds the total number of phases of service required for the social

optimum problem, where h is the number of phases per service and n* is
s

found from Equations (5.5) and (5.7). ri(k) is the expected reward per

4 occupancy of state i when decision is chosen. T (k) is the expected

waiting time in state i if action k is chosen. Pi,( is the proba-

bility of a transition from state i to j if action k is chosen. Yi(k)

can best be explained by observing that the stationary probability of
P

the system being in state i under policy P is 0i a Yi(k)Ti (k) for

Y (k) > 0. Thus, yM(k) is in essence a weighted probability that the

system is in state i under policy P. Policy P is a set of decisions

{i},i ,, 0, 1, ... , hn*.
s

The only remaining task is to include in the formulation the

requirement that the decision for each class be the same for the states

of the system that represent the presence of the same number of

customers. In general, states (i - 1)h + 1 to ih represent the

presence of i customers, where i - 1, 2, ... , n*. If the policy is
• - -S
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"o be one that can be implemented, the decisions k(j) {k 1 (j),

k(Q), ... , kM(J)} made for states j - (i - l)h + 1 to ih must be the

same. If i = 1; 2, ... , n* - 1, 2 actions are possible. [The number
S

of actions for some states could be reduced by using Equation (5.5) to

set k (J) - 0 for all j - (i - l)h + 1 to ih, where i - n .1 Thus,
m s m

for a policy to be implementable, the actions chosen for the states

-,r• i-xing each of i - 1, 2, ... , n* - 1 customers must be either
s

'I. - .i)h + 1} - k{(i - l)h + 2} -1 .. - i'ih) - (0,0,...,0)

k(i- J)h + 11 = k{(i - l)h + 21 - ... - h(ih) = (1,0,...,0)

k{(i - l)h + 11 = k{(i - l)h + 21 - ... - k(ih) - (ii,...,l)

These either/or constraints do not fit the usual form of linear

programming constrairits. The method suggested in Taha (1971) will be

used to convert the efther/or constra:nts to constraints that can be

used in a mixed integer program.

For i - , 2, ... , n* 1, let

r1 if •{(i - l)h + 11 (1,0, .•.,0)
Zi(l,0"...,O)

10 otherwise.

II

{ 1 if T(i - 1) h + i . k(ih) -(1, 1,. 1)
Zill1 .l 0 otherwise.
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Zi(O,0,...,0) is not needed since k must be 0 if k# (1,0,...,0),

and .... , and k # (1,1,...,l). The {Z (k)} are binary variables which
i

indicate whether or not action k is chosen when i customers are in the

system. If B is a large positive number, the either/or constraints are

equivalent to
A

ih
-gZ (l,0,...,0) + + y(0,0,. 0)

i hh

J -(i-i)h+1

ih

-B{1 Z z(1,1,. ..,l)} + y~k 0

whr i-il~~ 1, 2 .. , n,- . (.13

-Bzintlconside + I y (1, , 0) i s r
i j-(i-l)h+l J Z 0

ih

Z Ik y 0.) Ths-Bl-z(1,0,...,1) } + y.,(lyOk-,O-<-B

J-(i-l)h+l J,1,. ,

where i - 1, 2, ... , n* -. (5.13)
s .

To illustrate the equivalence of Equation (5.13) to the either/or

constraints, consider that if action (1,0,... ,0) is chosen for each

state from (i - 1)h + 1 to ih, then Zi(1,0,...,0) - 1 and all other

i • ~ Zi k 0. Thus, i

S-BZi(I,0,...,O) + y(l,0,...,0) -B
•~J- (i-l) h+l

ih
, + 7.y (1,O ... ,o) 0

J- (i-l)h+l J '

since B is a large positive number. Since yj k 0 and

-B{1 Z Z(lO,...,O)} 0'O
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£h<
- z1(l,0,...,.0) + y (k) < 0

jU(i-l)h+1 (

only if all yj(k), k 0(1,0,...,0) and j - (i - l)h + 1, ... , ih, are

zero. Since action (1,0,...,0) is chosen for all states (i - l)h + 1

L to ih, these y (k) are indeed zero. The other constraints in Equation

(5.13) are also satisfied. Thus, choosing action k (l,0,...,0) for

all states representing customer i satisfies Equation (5.13). Similar

argumeats can be made f,)r any other action chosen for all the states

representing a single customer'. If different actions are chosen for

the states representing a single customer, all Z i(k) are zero and at

least one of the

ih
-BZ(k) + [y.(k) - 0

J=(i-l)h~l

constraints is violated. Thus, only those policies that choose the

same action for all states representing a single customer satisfy

Equation (5.13).

Equation (5.13) allows at most h of the {y (k)}, j - (i - l)h + 1,

ih; all k, to be positive. Since y (k) 0 0j/Th(k) and is a

probability,

y (k /(mnk k))
.I,k J

Thus, the large positive number, B, required in Equation (5.13) is

determined by

B -, h/l(j j k )B =J

Equation (5.13) does not constrain the decision when zero or n*s

-12 ,---- -

i( i
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customers are in the system. When n* customers are in the system,
s

action k - (0,0,...,0) must be chosen since n - n* for all m. Thus,m s

i{(n* - 1)h + 1} - ... -k(n*h) - (0,0,...,0) (5.14)
s 5

Zero customers are in the system only if zero phases of service are in

the system, so only one state represents the condition of having zero

customers in the system. Thus, the problem of linking decisions does

not arise when zero customers are in the system. Equations (5.12) toI (5.14) constitute a mixed integer programming formulation of Model III.

The first example of Section 5.2 will be formulated as a mixed integer

program to illustrate the method.

A single class of customers receives a reward R - 3.5 for service

and is charged C - 4 for avery unit of time spent in the system. 1The

mean arrival rate of the Poisson stream of custo-aers is X - 2 customers

per unit time. The mean sirvi•.. rate capability of the single server

is U - 4 customers per unit time. Suprose that an Erlang two distribu-

tion provides a reasonable mode'. of the service time distribution.

From Equations (5.5) and (5.7),

I - n" [R/C + (h - 1)/(2h)] - 3

Thus, hn* 1 6 is a bound on the ntQSer of phases of service requii-eds

for the social optimum problem. The mean service time of each paase

is lifth) 1/8. The transition prrbabilities are

P ~~(0) 1.i j 1 , 2, ... 6 ,I PO, 2 (1) = 12

5.U,2
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and 2.2, 1 + 2
P ~(1) 0I.8, j = i- 1

otherwise, i 1, 2, ... , 4

(Recall that decision 0 cannot be chosen if i 0, and decision 1

cannot be chosen if i - 5 or 6.) Calculation of the expected reward

per occupancy of a state yields

r (0) =0, jiI, 2,..., 6

and

r (1) - P jJ+h(1){R -Q (J + h)C/(hU)1; j - 0, 1, ... , 4

The expected waiting times are

T (0) -0.125, j - 1, 2, 6

and

0.1, j 1, 2, 3, 4

Also, B -> b./(m-•V(k)J) - 2/0.1 - 20; let B - 25. With this informa-

tion, Equation (5.12) to (5.14) yield

max 2 .5y 0 (l) + 0. 4y1 (1) + O. 3y2 (l) + 0. 2y3 (l) + O.1Y4 (l)

subject to

YOM - yl(O) - O8-Yl O)(1) 0

• Yl(O) + yI(1) - Y2(0) - 0.8y (I) = 0

,71(0). + 7 2(l) - Yo(1) - 73(0) - 0.873(1) = 0

y3 (0) + Y3 (l) - 0.2y1 (1) - 74(0) - 0.8y4 (1) - 0

Y4 ( 0 ) + Y4 (l) - 0.2y2(1) - Y5 (0) - 0

Y5 (O) - 0.2y3(1) - 76(0) = 0

.fý •ii -
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0.5yo(l) + O.lZ5y1 (O) + O.1y 1 (1) + 0.125y2 (0) + O.ly 2 (1)

+ 0.1 25 y 3 (0) + O.lY3 (1) + 0.125y4 (O) + O.1Y4 (l)

+ 0.125Y5 (0) + 0.125y 6 (0) - 1

1 + Y1(1) + y2(1) - 0

-25{1 - Zl(1)} + y (0) + Y2(O) 0 0

-25Z 2 (1) + y 3 (1) + Y4 (1) < 0

-25{1 - Z ()2(1)1 + Y3(0) + Y4() -0

-ere

ZI I(1), z2(1) - 0 or 1; Y0(1) = 0, y (k) 0 for j =1, ., 4;

k = 0i; y(O) > 0' Y6(0) >=0

The optimal solution tro this problem is

yo(1) - 1.12, y (1) - 1.4, y 2 (1) - 1.75, y3 (0) - 0.63,

Y4 (0) - 0.35, Z1 (1) - 1 .

All other y (k) and Z2 (1) are 0. The optimal gain rate is g - 3.895.

This solution gives an optimal social balking point of n 0 2.

5.7 Conclusion

In this chapter, the model was generalized to provide an Erlang

service distribution for the server. This was done because the flex-

ibility of the Erlang distribution will be needed in Chapter VI to

devtlop a realistic model of the actual service time distribution for

an airport landing system. For the policy iteration solution procedure,

a control-limit solution was assumed; however, no restrictions were
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placed on the form of the solution found by mixed integer pro-

grami ng.

The policy iteration procedure is a heuristic algorithm that

V I is easy to implement. On the other hand, the mixed integer

programming formulation allows identification of the optimal solution

but becomes cumbersome f or large problems.- The policy iteration

procedure requires the invers ion of a matrix that has as many rows

and columns as there are states. The mixed integer program has an

equality constraint for each state. These problems may hamper the

solution of problems with several hundred states or mor,-; however,

I the user of these methods should be able to alleviate s-ach problems

by taking advantage of the sparseness of the matrix (constraints).

Since the policy iteration procedure is easy to implement, the user

j should consider trying it first. If its results are unsatisfactory,

the user can then try mixed integer programming.

M-Zi



CHAPTER. VI

AIRXPORT LAN4DING QUEUE APPLICATION

In this chapter, Models II and III ai.j applied to airport

landing queues, Data from several sources are used to develop the

parameters of the models; however, the particular airport that is

modeled is the Greater Pittsburgh International Airport. The work of

Adler and Naor (1969) is used to help refine the results obtained for

the Pittsburgh Airport.

6.1 Customer Parameters

The purpose of this chapter is to determine how entry to the

landing queue should be controlled during peak traffic periods when a

single runway is being used for landings only. The use of a peak

traffic period to determine the control policy makes the benefits of a

control policy apparent. In light traffic, little or no control is

required. Thus, a peak traffic period gives the best indication of anj

airport's capability to land aircraft effectively. Only commercial

jet aircraft are considered in this study, althouah other traffic uses

the Pittsburgh Airport. The other traffic generally uses another

runway during periods of heavy use of the Pittsburgh Airport so that

the models can be applied realistically to commercial jets only.

C, wercial jet aircraft are divided into the following five

classes:
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1) Class One - Three-engine, wide body

2) Class Two - Four-engine, wide body

3) Class Three - Three-engine, regular body

4) Class Four - Four-engine, regular body

5) Class Five - Two-engine

The aircraft that make up the various classes are listed in Table 6.1.

TABLE 6.1

Aircraft Categorized by Class

Class Manufacturer Aircraft

1 Lockheed L-1011

McDonnell-Douglas DC-10

2 Boeing 747

3 Boeing 727

4 Boeing 707

McDonnell-Douglas DC-8

5 British Aircraft Corp. BAC-111

McDonnell-Douglas DC-9

The mean arrival rate of each class, X , is determined first.

The Transportatiou Systam Center (1978) lists the hourly number of

landings on 4 August 1978 for the Pittsburgh Airport. A peak number

of 32 landings occurred from 1600-1700 hours and again from 1900-2000

hours. Thus, the overall mean arrival rate used in this study is 32

aircraft per hour. Rather than find class arrival rates by attempting

1m
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to determine which aircraft arrived during these periods, class arrival

rates are approximated by first deter-Aining the proportion of total

yearly passenger jet traffic at the Pittsburgh Airport that is repre-

sented by each class. The caean arrival rate of each class during a

peak period is approximated by multiplying 32 by the proportion of

yearly jet traffic that each class represents. The Civil Aeronautics

Board and Federal Aviation Administration (1978) list the total number

of departures (and thus, arrivals) from the Pittsburgh Airport for each

type of aircraft for a 12-month period ending 30 June 1978. The

percentage of the total number of commercial jet departures and the

computed mean arrival rate of each class are given in Table 6.2.

TABLE 6.2

Percentage of Yearly Jet Traffic Represented
by Each Class and Approximate Mean Arrival

Rate for Each Class In a Busy Period

Casof Yearly IArrf/r
Class ~Jet Traffic ~ m(Arrt/)

1 2.1 0.672

2 0.2 0.064

3 26.2 8.384

4 6.2 1.984

*5 65.3 20.896

Noah et al. (1977) provide three estimates of the direct

operating cost to the airlines of each hour of flying time due to

delay. The costs included in the estimates are the costs of fuel,

j-,>q~
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airline crew, aircraft maintenance1 , and depreciation of the aircraft.

The estimates derived from three different sources [civil Aeronautics

Board (CAB) (1975); Reck et al. (1975);and Rogers et al. (1975)] are

given in Table 6.3. For each class mi, C is approximated by averaging

the three estimates given in Table 6.3. These approximations are shown

in Table 6.4.

The computation of R m, the reward for the service of an aircraftI

of class m, is rather involved. R is found by multiplying the average

profit per passenger by the average number of passengers on a flight of

class m. The average profit per passenger is obtained by dividing the

sum of the profits of all domestic airlines for a year by the number of

passengers that flew in that year. 1974 figures are used because the

estimates of costs used for C mwere made in 1975 and thus were probably

based on 1974 data. Moles and Wimbush (1976) report the sum of the

profits of all domestic airlines in 19 74 as $799,298,000 and list

189,733,000 as the number of passengers for that year. Thus, the

average profit per passenger is $4.21. Moles and Wimbush (1976) also

give the fraction of seating that was occupied, the passenger load

factor, as 0.555 for 1974. The average number of passengers on a

* flight of class m is the average capacity of class m aircraft times

* the load factor. The average capacity of airLraft of class m is

* determined by a weighted average of the seating capacities of the

* aircraft that make up the class. The weight for a given type of

aircraft in class m is the proportion of yearly flights into the

Pittsburgh Airport by class m aircraft that is accounted for by the

particular aircraft type. These proportions can be computed for the

Pittsburgh Airport from data given by the CAB and FAA (1978). The
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TABLE 6.3

Estimates of Direct Operating Cost Per Hour
of Flight for Each Class of Aircraft

Class CAB ($/Hr) Reck ($/Hr) Rogers ($/Hr)

1 1729.20 1718.40 1620.00

2 2415.60 2295.60 1980.00

3 871.20 860.40 780.00

4 1112.40 1093.20 1080.00

5 694.80 671.40 660.00

TABLE 6.4

Cost Per Hour of Flight for Each Class

Class C ($/Hr)m

1 1689.00

A 2230.00

3 837.00

4 1095.00

5 675.00

7I
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maximum seating capacities of the various aircraft in the classes are

taken from Aviation Week (1977). The weights and seating capacities

are given in Table 6.5. The average capacity for each class can be

found by summing the products of the last two columns of Table 6.5.

These results are given in Table 6.6. For each class m, R mis the

average profit per passenger ($4.21) times the load factor (0.555)

times the average capacity of an aircraft of the class (Table 6.6).

The values c'f R mare givý-. in Table 6.7.

6.2 Server Parameters

The first task that must be accomplished is to define a service.

In actual practice, the control of an aircraft approaching the

Pittsburgh Airport begins with the Cleveland center, is then trans-

ferred to approach control, and is finally passed on to the control

tower. Each of these control sectors is really a group of air traffic

controllers. In turn, each controller may handle from one to about 1
six aircraft. During busy periods at the Pittsburgh Airport, most

commercial jet traffic is landed on Runway 28 center, while departures

operate from Runway 28 right. If Runway 28 center and the airspace

.iear it are defined as the service facility, then a single server

1
model is appropriate. Since FAA rules require a minimum separation

between aircraft, on approach and on the runway, the service time of

an aircraft is defined to be the period of time that the runway is

cleared for use by the aircraft. This definition is easiest to

11f an airport uses several runways for landings, a single
server model could still be used for a given runway if the class
arrival rates are adjusted so they are class arrival rates at the
particular runway rather than at the whole airport.
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TABLE 6.5

Seating Capacity and Within Class Weights
for the Aircraft in Each Class

Class Aircraft Type Seating (maximum) Weight

1 DC-10 380 0.46

L-1011 400 0.54

2 Boeing 747 500 1.00

3 Boeing 727-100 131 0.65

Boeing 727-200 189 0.35

4 Boeing 707-100B 181 0.63

Boeing 707-300, 300B,
300C '189 0.20

DC-8-20 176 0.01

DC-8-50, 62 189 0.01

DC-8-61 259 0.15

5 BAC-Ill 89 0.22

DC-9-10 90 0.14

DC-9-30 115 0.53

DC-9-50 139 0.11

-- - -- -
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TABLE 6.6

Average Seating Capacity of Each Class

Class Average Capacity

1 391

2 500

3 151

4 194

5 108

TABLE 6.7

Reward Per Flight for Each Class

Class R ($
m

1 914

2 1168

3 353

4 453

5 252

,,...:ji~~ 91-A" TT~,
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implement when the airport is busy; then, the service time of Aircraft

B (which follows Aircraft A) is defined to be the time from Aircraft A's

crossing the end of the runway (or some other easily defined point) to

Aircraft B's crossing the same point. Thus, the service time distri-

bution is obtained from data taken during busy periods at the airport.

This service time distribution is assumed to apply whether or not the

airport is busy.

Data were taken at the Pittsburgh Airport on 8 June 1979 under

good weather conditions. Observations of the service times were made

at a radar scope similar to that used by the air traffic controllers.

The radar scope was used instead of direct visual observation for the

following reasons:

1) The information given on the scope included the

altitude of the aircraft which provided an alternate

definition of the end of a service; in this case,

1200 feet, the elevation of the runway, was used

rather than the end of the runway.

2) The information given on the scope included the type

of aircraft so that service time observations not

involving aircraft in the five classes (or aircraft

with similar landing speeds) could be dropped.

3) The pattern of aircraft on the scope facilitated the

identification of busy periods.

The service times which were found using a decimal minute stopwatch

are given in Table 6.8.

The sample mean of the Pittsburgh data is x =1.81 minutes and

the sample standard deviation is s 0.413 minutes. The parameters of
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U, TABLE 6. 8

Observed Service Times (Pittsburgh)

Observation Time Observation Time Observation Time
(mini) (Min) (Mini)

1 2.00 24 1.68 46 1.34

2 21525LO 47 1.53

3 1.76 26i 2.39 48 2.34

4 2.09 27 2.27 49 2.50

5 2.65 28 1.61 50 1.94

A6 2.48 29 1.57 51 1.79

7 1.94 30 2.33 52 1.32

8 2.10 31 1.69 53 1.18

9 2.01 32 1.55 54 2.57

10 1.56 33 1.41 55 1.87

11 2.18 34 1.48 56 1.93

12 1.33 35 1.87 57 1.79

13 1.10 36 2.58 58 1.94

14 2.02 37 1.73 59 1.32

15 1.93 38 1.80 60 1.57

16 2.42 39 2.05 61 1.62

17 1.85 40 1.27 62 1.63

18 1.55 41 1.41 63 1.32

19 1.98 42 1.48 64 1.41

120 2.87 43 1.87 65 1.48

21 2.27 44 1.56 66 1.16

22 1.70 4~5 1.72 67 1.62

*23 1.85

. 'L
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the Erlang distribution, service rate V and Erlang number h, are

estimated by both the method of moments and the method of maximum

likelihood. [See White, Schmidt, and Bennett (1975).]

For the method of moments, the point estimates,p and b, of the

parameters of the Erlang distribution are found using Equations (6.1)

and (6.2).

S= 1/x (6.1)

and

h 1/(s u) (6.2)

For the data in Table 6.8, the estimates are -- 0.552 aircraft per

minute and h - 19.3. Since the unit of time used in the calculation

of the customer's parameters is an hour, the estimate of V needs to be

converted to 1 - 33.15 aircraft per hour. Since h has to be an integer,

19.3 is infeasible. This problem will be resolved shortly.

A

The point estimates, u and h, of the parameters of the Ezlang

distribution using the method of maximum likelihood are found using

Equations (6.3) and (6.4).

/ l/x (6.3)

and
^ n -1/v--- ^1h 11 x 1[ 1) -exp{ Tn)} (6.4)

i.1

where xi is observation i, n is the number of observations, exp(.)
A

"represents e raised to the power (.), and Y(h) is given by

A A A 2
T(h) I Yn(h - 0.5) + 1/{24(h - 0.5) } (6.5)

^ A>

The approximation in Equation (6.5) is only valid if h - 2. Since h

appears on both sides of Equation (6.4), a few iterations using trial
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and error or bisection are required to solve for it. For the data in

Table 6.8, the estimates are U - 0.552 aircraft per minute or - 33.15

aircraft per hour and h - 19.6.

Both methods yield estimates of the Erlang number that are

infeasible. White, Schmidt, and Bennett recommend choosing an integer

on either side of h when this occurs. The estimate for the data in
Table 6.8 is thus either h - 19 or h - 20.

The final skep in fitting the data in Table 6.8 is to test the

hypothesis that the sample data could have come from an Erlang distri-

bution with the estimated parameters. A chi-square goodness of fit

test will be used. White, Schmidt, and Bennett suggest that maximum

likelihuod estimates be used for the parameters of the Erlang distribu-

tion to &-utrartee that the asymptotic distribution of the test

statistic is chi-square. The test is:

H0 : The daeta come from an Erlang (p,h) population.

HI: The data come from some other population.

Test Statistic: X k (0 E 2 /E
i-i

Rejection Region: X 2 > XI2 (d)

k is the number of class intervals into which the data are divided.

3 is the number of observations that fall in interval i, while E is
i i

the expected number of observations that would fall in interval i under

H . a is the level of significance of the test. The number of degrees
0

of freedom of the test, d, is k - 1 minus the number of estimated

parameters of the aistribution. Since two parameters are estimated

for the Erlatig distribution, d is k - 3. White, Schmidt, and Bennett

L ;,!,,

*- 'A--- -L *~
4

i.i
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recommend that:

1) The number of intervals be chosen such that 0, 5

and E - 5 for all i.

2) The intervals be chosen so that the probabilities of

an observation falling in each are nearly equal under H
4 0*

For the data in Table 6.8, k was arbitrarily chosen to be six.

Since there are 67 observations, such a value of k should allow the

intervals to be chosen so that 0 -ad E are at least five for each.
i* i

j A computer program was written to evaluate the integral of the Erlang

j density so that the location of the intervals could be chosen to

satisfy both recommendations. The location of the intervals used and

the values of 0 1and E when the hypothesized distribution is an Erlang

Gv- 33.15, h - 19) distribution are given in Table 6.9. If a level of

significance Ot 0.05 is used, the critical value,)X (3), is 7.81.
0.95

Since the value of the test statistic is 0.805 for this test, the

hypothesized distribution cannot be rejected. En addition, the

extremely small value of the test statistic indicates a very good fit.

TABLE 6.9

Observed and Expected Class Frequencie~s When an Erlang

W 33.15, h -19) Distribution Is Hypothesized

Interval

40.0 1.385 1.585 1.735 1.905 2.205
to to to' to to to

1.385 1.585 1.735 1.905 2.205

0 10 3 9 914 1
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The location of the intervals used and the values of 0 and Ei
i

when the hypothesized distribution is an Erlang (V - 33.15, h - 20)

distribution are given in Table 6.10. The value of the test statistic

for this data if 0.998. Again, if the level of significance is 0.05,

the hypothesized distribution cannot be rejected and a very good fit

is indicated.

TABLE 6.10

Observed and Expected Class Frequencies When an Erlang
- 33.15, h - 20) Distribution Is Hypothesized

Interval

0.0 1.385 1.585 1.735 1.905 2.205
to to to to to to

1.385 1.585 1.735 1.905 2.205

0 10 13 9 9 14 12

Ei 9.54 11.00 9.94 11.04 14.62 10.86

Thus, both 19 and 20 are reasonable estimates of the Erlang

number for the data in Table 6.8. Since the number of states needed

for policy iteration is n*h + 1, there is an incentive to choose the
S

smaller h. Recall that each step of the policy iteration algorithm or

the evaluation of each policy requires the inversion of a matrix that

is (n*h + l)-square. In light of this requirement, it may be even more

practical to use an estimate of h that is smaller than the maximum

likelihood estimate but which passes the goodness of fit test. While

in theory, this procedure may be hard to justify, it should not intro-

duce any appreciable errors. To illustrate, an Erlang (p - 33.15,

I .

A(,



116

2
h -8) distribution yields X 8.65 which fails the chi-square test at

a 0.05, but passes for a - 0.01. For the purpose of this chapter,

however, the Erlang (pd - 33.15, h -19) distribution is chosen. When

Model II is used in this chapter, an exponential distribution with

p - 33.15 is assumed.

Data were also taken at the Washington National Airport on

10 July 1979, again when the weather was good. During the period of

observation, Runway 18 was being used for botb arrivals and departures.

Some of the observations of service time were made using a radar scope,

but the majority of them were made visually. The Wipshington data given

in Table 6.11 is presented primarily to 3upport the general applica-

bility of the Pittsburgh data. At a level of significance of 0.05, an

Erlang (p - 37.48, h - 16) distribution provides a good fit of the 34

observations taken.

6.3 Deterministic Service Time Model

n s, the individual optimum balking point for class m (in terms
5

of customers), is found using Equation (5.5). The value of n is
m

given for each class, m, in Table 6.12. These results imply that for

the Erlang 19 model, n* is 18, so that the number of states required
s

is 343. The solution techniques based on policy iteration, Al3oritbm

5.1, will require the inversion of a matrix that is 343 rows by 343

0 columns. Since the matrix generated will be sparse, special techniques

could be used to invert such a large matrix while maintaining a

reasonable degree of numerical precision. However, another approach

is pursued in this paper.
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TABLE 6.11

Observed Service Times (Washington National)

Observation Time Observation Time Observation Time
(mini) (Min) (Min)

1 1.78 13 2.12 24 2.37

2 1.40 14 1.60 25 2.15

3 1.63 15 1.12 26 1.77

4 1.60 16 1.52 27 1.22

5 1.95 17 1.12 28 2.18

6 1.70 18 1.48 29 2.32

7 1,66 19 2.05 30 1.62

8 1,15 20 0.95 31 1.16

9 1.30 21 1.97 32 1.82

10 1.15 22 1.57 33 1.29

11 1.30 23 1.00 34 1.95

12 1.48
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TABLE 6.12

Individual Optimum Balking Points (h - 19)

Class n (Customers)
m

1 18

2 17

3 14

4 14

5 12

The optimal policy and corresponding gain rate for the Erlang 19

model will be estimated based on lower Erlang number models. The next

two sections develop a pattern to the results for the lower Erlang

number models which suggests that this estimation procedure is reason-

able. Erlang 1 through Erlang 8 models will be used for this process.

Furthermore, since the Erlang 0o service time distribution represents

deterministic service times, a deterministic service time model can be

used as one bound for the Erlang 19 results, while the Erlang 8 results

represent the other bound (the Erlang 19 results lie between these

bounds). Adler and Naor (1969) study a single class model like Model I

* but with deterministic service times. Their results are presented here

and then used in Section 6.5 to approximate the results for a multiclass

deterministic service time model.

Let T be the length of a service. r0 is the steady state

probability that the system is empty, while 0 is the steady state
C
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probability that the service station is closed. (0 corresponds to
C

0 n in Model I.) The average rate at which customers depart the
0

service strtion is (1 - 0 )/T. The average rate at which customers
0

are admitted to the service station is X(l - 0 ). In steady state,
C

these two rates must be equal; that is,

(l - 0o)/T - X(1-0) . (6.6)

The social optimum objective function that Adler and Naor use is

g - {R(l - 0 )/T} - CL . (6.7)0

Frow Equation (6.6), (1 - 00 )/T - X( c) a V', the effective arrival

rate. With this substitution, Equation (6.7) becomes

g - 'R- CL (6.8)

which is Equation (3.2), ignoring the dependence of n. Thus, the model

of Adler and Naor is indeed the same as Model I except for the deter-

ministic nature of the service times.

Adler and Naor define a state space that can assume nonintegral

values. Recall that, in Model I, the state of the system is the number

of customers present in the system. Adler and Naor define the state of

the system to be the number of whole service times, T, present in the

system. (They assume an arrival can determine how much service time

remains for the customer in service.) Sinze an arrival can find the

service of the customer in service partially completed, the state of

the system can take on nonintegral values.

The balking point for the individual optimum problem is v - 1,

where v is determined by
5

S•-, • • , ii,,,... • ir•:• •,• • •,. i'
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v - R/(CT) . (6.9)s

The authors show that the forced balking point for the social optimum

problem is given by v° - 1, where v0 satisfies

vs0 (vp) - +,L(v, p) 0 (6.10)

dler and Naor also show that

J- ( I)P} J-1

0O(V,p) - 1/(I + I (-I)' 1)-c-i p exp{(v - j)})PJul

(6.11)
and

L(v,p) n n - %0(vP){ exp{(v - 1)p}(l + np - vp)

n )_pkl(v- Ok-1
+ I (exp{(v -)P jk 1}J=2 •k-l-

+ (_l)j-i {(v -,)•}Jl,,-( - vo)})
j -2P

(6.12)

where n is the greatest integer in v. One way to solve for v is to0

guess a starting value such as v - v, then use a technique like

bisection to search for a value of v that satisfies Equation (6.10),

S, where Equations (6.11) and (6.12) are used to evaluate 0 and L
0

required in Equation (6.10). Once a value of v is determined, the

corresponding values of 0 and L can be used in Equation (6.7) to
0

determine the maximum gain rate of the model.

To illustrate the above solution technique, let R - 5, C - 2,

X - 1, and T - 1/3 be the parameters of the model. The traffic

intensity, p, is given by p - XT - 1/3. Equation (6.9) yields v. - 7.5.

After a few iterations, bisection yields v° - 5.4167, which implies that

dl
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the forced balking point is 4.4167. Equations (6.11) and (6.12) yield

00 0.6667 and L -0.4164. Finally, Equation (6.7) gives g -4.1667.

To illustrate the suggested method for bounding the results for

an Erlang 19 model, the deterministic results will be compared with

the results of several Erlang models with low values of h. Since

Adler and Naor assume that an arrival knows how much service time

remains for the customer in service, the most appropriate Erlang model

for comparison with the deterministic model is one in which the

customer knows the service phase of the customer in service. Table

6.13 gives the social optimum gain rate ax.d forced balking points for

several Erlang models of the excample. The forced balking point, in

Table 6.13 is given in terms of customers in line plus phases of service

left for the customer in service. For instance, 4 cust + 3 ph means

that customers are forced to balk if the state of the system representsJ

at least four customers in line plus three phases of service remaining4

for the customer in service. The deterministic results plus the data

in Table 6.13 indicate that the optimal policy for an Erlang 19 model

is probably a balking point of four customers in line plus several

phases of service left for the customer in service which should yield

a gain rate between 4.146 and 4.1667. The actual phase optimum

solution of the Erlang 19 model provides a gain rate oi 4.158 with a

balking point of four customers in line plus eight phases of service

left for the customer in service.
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TABLE 6.13

Results for Several Erlang Models
of the Example

Erlang Number Gain Rate Forced Balking Point

1 4.003 4 cust + 1 ph

2 4.084 4 cust+ 1 ph

6 4.139 4 cust + 3 ph

8 4.146 4 cust + 4 ph

6.4 Results for Model II

For Model II, applied to the Pittsburgh Airport problem, the

service rate of the exponential server is 33.15 aircraft per hour. The

computer program in Appendix D, POLIT, was used to solve for the optimal

policy, the resulting gain rate, and the probability of rejection ot an

arrival from each class. The probability of rejection of class m is

found by summing the steady state probabilities of the system occupying

states n through n*. The results from POLIT are summarized in
0 smTable 6.14.

Since the first iteration of the policy iteration algorithm

chooses the individual optimum policy (see Table 6.12), its gain rate

can be found ($4905 per hour). Thus, the model indicates that for a

peak traffic hour, the average net benefit to the airline companies

can be increased $1784 by implementing the social optimum policy

rather than the individual optimum policy.
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TABLE 6.14

Results for the Expionential ( -33.15) Model

Class n 0Rejection Probability
0

1 13 < 0.01

5 3 0.316

Gain Rate ($/Rr) 6689

Although the model assigns no cost to rejecting an aircraft, the

probability of rejection of a ciaru indicates how the optimal policy

would affect the current operatic , of that class at the airport. It i
is possible to use the model so that a "cost" of rejection is introduced

by setting controls on the maximum probability of rejection allowed for

any class. This approach might consist of a procedure to search various

combinations of class arrival rates using POLIT to evaluate each combin-

ation until a combination is achieved that produces both an acceptable

gain rate and an acceptable maximum probability of rejection. The

schedule used in the Pittsb'irgiLi example leads to a rejection probability

of 0.316 for the class that provides 65% of the arrivals at the airport.

The procedure mentioned above could be used to improve on this situation.

Although such use of the model is beyond the scope of this chapter, the
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sensitivity of the gain rate and rejection probabilities to deviations

from the optimal policy will be checked to provide some insight into

how this use of the model might proceed.

A straightforward approach to checking the sensitivity of the

model to deviations from the optimal policy is to use the policy

evaluation portion of the policy iteration algorithm to evaluate

several policies that are in some sense close to the optimum. The

results for several such policies are given in Table 6.15. For con-

venience, a balking point of 14 rather than 13 is used for class one.

Since the steady state probability of the system occupying state 14 is

essentially zero, such a change from n 0 13 has little effect on the

results of the model. Results like those presented in Table 6.14 pro-

vide an administrator some capability to trade off a reduction in the

gain rate for a reduction in the maximum probability of rejection for

any class.

The sensitivity of the results to changes in a single parameter

was tested by determining the range of parameter values for which the

optimal policy remained the same. The service rate, Ui, was varied both

up and down until the optimal policy changed. The results are given in

Table 6.16. Since the change of n 0from 14 to 13 is insignificant due

to the low probability (less than 104)of the system occupying state

13 or 14, the optimal policy is stable for 1i in the range 31+ to 34-.

The location of the change could be found more precisely with additional

evaluations.
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TABLE 6.15

Results for the Exponential (U - 33.15)
Model for Seve,:al Nonoptimum Policies

Class Balking Rejection Balking Rejection
Point Probability Point Probability

1 14 < 0.01 14 < 0.01

"2 1 14 < 0.01 14 < 0.01

3 6 0.021 6 0.052

4 7 < 0.01 7 < 0.01

5 4 0.250 5 0.197

Gain
Rate 6674 6564
($1Hr)

Class Balking Rejection Balking Rejection
Point Probability Point Probability

1 14 <3.01 14 < 0.01

2 14 < 0.01 14 < 0.01

3 60 131 7 0.112

4 6 0 .31 7 0.112

5 6 0.131 7 0.112

Gain
Rate 6396 6214
($/Hr)
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j TABLE 6.16

Balking Points and Gain Rate
for Various Values of Pi

Class 31 32 33.15 34

1 13 13 13 14

2 13 13 14 14

3 5 6 6 6

4 7 7 7 8

5 3 3 3 4

Gain
Rate 6367 6521 6689 6811

The value of X the arrival rate of class five, was also varied

in both directions until the optimal policy changed. The results are

given in Table 6.17. These results indicate that the optimal policy is

*stable for X5in the range 19~ to 27.

Finally, the value of R, the reward for the service of a class

five customer, was varied until the optimal policy changed. The results

4 ~given in Table 6.18 indicate that the optimal po11tcy is stable for R
5

in the range 230 + to 270-.

If desired, the stability of the optimal policy to changes in

the other parameters, including the C m's, can also be tested. The

technique used for pJ, X 1and R5 can be applied to the'se determinations

as well.
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TABLE 6.17

Balking Point~s and Gain Rate
for Various Values of X5

X5

Class 19 20 20.90 26 27

1 13 14 13 13 13

2 13 14 14 14 14

3 6 6 6 6 5

4 7 7 7 7 7

5 4 3 3 3 3

Gain
Rate 6568 6631 6689 6958 7000
(S /Hr)

TABLE 6.18 I
Balking Points and Gain Rate

for Various Values of R 5

Class 230 240 252 260 270

1 14 14 13 13 13

2 14 14 14 14 14

3 6 6 6 6 6

4 8 7 7 7 7

5 3 3 3 3 4

Gal n 6375 6518 6689 6803 6956
Rate W$HO)
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6.5 Results for Model III

For Model III, the service time distribution is modeled as an

Erlang (p - 33.15, h - 19) distribution as developed in Section 6.2.

As this distribution leads to a large number of states (343), the

solution presented in this section is found in a somewhat roundabout

manner. First, Erlang models with U - 33.15 and h - 2, 4, 6, and 8

are solved using Algorithm 5.1. These results are used to hypothesize

the optimal policy for the Erlang 19 model. The gain rate of the

Erlang 8 model serves as a lower bound for that of the Erlang 19 model.

Then, the deterministic model of Section 6.3 is used to approximate the

gain rate for a deterministic service time model of the Pittsburgh

Airport. This gain rate serves as an upper bound on the gain rate for

the Erlang 19 model.,

The results for the lower Erlang number models will be presented

first. Recall that the policy iteration-based algorithm, Algorithm 5.1,

uses as a starting point the results from an Erlang mode]., the phase

optimum model, in which customers can determine the service phase of

the customer in service. The phase optimum results for Erlang models

with p - 33.15 and h - 2, 4, 6, and 8 are given in Table 6.19. As in

Table 6.13, the forced balking points are given in terms of customers

in line plus phases of service left for the customer in service.

Recall that an implementable or linked policy does not require

the administrator to determine the service phase of the customer in

service. The set of candidate forced balking points, found using

Step (c) of Algorithm 5.1, are given in Table 6.20 for each of the

four linked Erlang models considered. Except for class three in the
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TABLE 6.19

Phase Optimum Balking Points and Gain Rate
for Several Low Erlaxg Number Models

h

Class 2 4 6 8

1 I 12 cust + 12 cust+ 12 cust+ 12 cust +
2 ph 3 ph 5 ph 6 ph

2 13 cust + 13 cust + 13 cust + 13 cust +
1 ph 1 ph 1 ph 1 ph

35 cust+ 4 cust+ 4 cust+ 4 cust +
1 ph 4 ph 5 ph 7 ph

4 6 cust+ 6 cust+ 6 cust + 6 cust+
2 ph 2 ph 3 ph 3 ph

52 cust+ 2 cust + 2cust+ 2 cust+
2 ph 2 ph 3 ph 4 ph

Gain Rate 6975 7141 7203 7235
($/Hr)

TABLE 6.20

Candidate Forced Balking Points for
Several Linked Erlang Models

h

Class 2 4 6 8

1 13,14 13,14 13,14 13,14

2 14 14 14 14

3 6 5,6 5,6 5,6

4 7,8 7,8 7,8 7,8

5 3,4 3,4 3,4 3,4

I)
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Erlang two model, the candidate forced balking points for each class

are the same for all four Erlang models. Since the ste&dy state

probability of any of those systems occupying 13 or 14 is insignifi-

cant, the forced balking point for class one is arbitrarily chosen to

be 14. Policies that use all possible combinations of this reduced

set of candidate balking points were evaluated to determine the best

linked policy for each model. The results for the best policy for

each model are given in Table 6.21. For each of these models, several

policies tied (within roundoff error) for the beac policy. Of these,

the policy with the largest values of the n was chosen in each case0
m

as the best policy. The ties were the result of low probabilities of

the systems occupying states beyond state six. Note that for each

model, "he best linked policy found u);ing Algorithm 5.1 achieves a gain

rate that is better than 99.8% of the phase optimum gain rate. Depend-

ing on the use of the model, such a result probably precludes the need

for a more lengthy search 'for a best policy. Since the same linked

policy provides the best results for all four models, it seems reason-

able to assume that the policy will also provide the best results for

the Erlang 19 model. Although the gain rate increases with the Erlang

number h, the incremental jump decreases with higher values of h.

, Thus, the gain rate of the Erlang eight model, $7223 per hour, provides

a good lower bound on the gain rate of the Erlang 19 model.

A deterministic service time model provides the capability to

get an upper bound on the gain rate for the Erlang 19 model; however,

the deterministic model of Adler and Naor (1969) presented in Section

6.3 only applies to a single class of customers. No attempt is made

here to extend their work. Instead, the single class deterministic

I

i~4,
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TABLE 6.21

Best Results for Several Linked Erlang Models

h-2 h- 4

Class Balking Rejection Balking Rejection
Point Probability Point Probability

1 14 < 0.01 14 < 0.01

2 14 < 0.01 14 < 0.01

3 6 < 0.01 6 < 0.01

4 8 < 0.01 8 < 0.01

5 3 0.2796 3 0.2557

Gain 6963 7129
Rate ($/Hr)69372

h" 6 h- 8

Class Balking Rejection Balking Rejection
Point Probability Point Probability

1 14 < 0.01 14 < 0.01

2 14 < 0.01 14 < 0.01

3 6 < 0.01 6 < 0.01

4 8 < 0.01 8 < 0.01

5 3 0.2464 3 0.2414

Gain Gain7191 7223
Rate ($IHr)

4
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model is used to approximate the gain rate for the five class

Pittsburgh Airport model with deterministic service times. The five

classes of aircraft are replaced by a single composite class whose

reward for a service is determined by a weighted average of the rewards

for the five classes. The weight for each class can be determined from

Table 6.2 as the proportion of the total arrival rate that is accounted

for by the class. Analogously, the cost per hour of flight for the

composite class is a weighted average of the costs for each of the

five classes. The arrival rate for the composite class is the sum of

the arrival rates of all five classes. Since the services are

deterministic, the service rate is a constant whose value is the

estimate of p1 used in Models II and III. The parameters of the

composite class are given in Table 6.22.

TABLE 6.22

Parameters for the Single Composite Class Model

Parameter Value

R 306.7

C 767.9

X 32.0

33.15
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The approach used here to estimate the gain rate for a determin-

istic five class model from the deterministic single composite class

model begins with the comparison of the gain rates found by policy

iteration for several phase optimum Erlang models applied first to the

composite class and then to the full five classes. Calculation of the

ratio of the composite class gain rate to the 5ive class gain rate for

Models 11 and III with h - 2, 4, 6, and 8 provides a means of estimating

the ratio of the composite class deterministic gain rate to the five

gain rae h ieclass gain rate, and the ratio of the two rates for

eachof he ivemodels mentioned.

TABLE 6.23

Policy Iteration Phase Optimum Results for
Several Models of Both a Single Composite

Class and the Full Five Classes

Model Composite Class Five Classes Ratio
Gain Rate W$HO) Gain Rate ($IHr) (Composite/Five)

II6506 6689 0.973

III, h - 2 6800 6975 0.975

h - 4 6977 7141 0.977

h - 6 7042 7203 0.978

h - 8 7076 7235 0.978
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The deterministic gain rate for the single composite class can

be determined using the results of Adler and Naor presented in Section

6.3. Their method gives 00 ft0.1504 and L - 1.890 which, when substi-

tuted into Equation (6.7) yields g - $7186 per hour. Since Table 6.23

suggests that 0.97 is a good lower bound on the ratio of the determin-

istic composite class gain rate to the deterministic five class gain

rate, a reasonable upper bound on the deterministic five class gain

rate is $7408 per hour. This gain rate serves as an upper bound on

S the gain rate of the Erlang 19 model.

The results of this section suggest that the socially optimal

policy for the Erlang 19 model of the Pittsburgh Airport is to implement

the following set of forced balking points: n 0 - (14, 14, 6, 8, 3).

This policy should provide a gain rate of somewhere between $7223 and

$7408 per hour to the arrivals during a busy period, w~hile int~urring a

rejection probability of less than 0.2414 for class five customers and

less than 0.01 for any other class. Analysis of the sensitivity of

these results to changes in the input parameters could be tested in

the same manner as was done for Model II.

6.6 Conclusion

This chapter was devoted to applying the techniques developed

to determine the optimum control policy for the landing queue at the

Pittsburgh Airport. Use was made of Models II and III. The parameters

of the models were determined from published FAA data, the literature,

and direct observation. Computational simplifications were investi-

gated and sensitivity of solutions examined. All indications are that

the simplified analyses are practical and sensitivities easy to

determine.
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A few suggestions for refining the estimate~s of the model

parameters follow; however, before such refinements are incorporated

into the model, it is suggested that the sensitivity of the model to

the changes be checked. It might be possible to estimate the effect

of the changes based on model sensitivities already determined.

The R mvalues can be refined by using an average passenger load

factor for each type of aircraft and thus for each class. Further

improvements in the estimates of the R m s also affect the estimates of

* ~the C Is and X Is through expansion of the number of classes. (Each~
m m

new class m would require its own estimated R m, C , and X m.) For

instance, the existing classes can be subdivided based on a range of

values of the passenger load factor. Thus, class one might become

four classes, one for a 0 - 25% loading factor, another for a 26 - 50%

loading, and so on. R m might be improved even further by again

subdividing the classes based on individual aircraft type.

The estimates of the X mcan be improved by basing them onI

actual or proposed schedules of arrivals during representative busy

periods rather than yearly statistics.

The estimates of the parameters of the service time distribution

were based on observations made at the Pittsburgh Airport. The

* estimates were confirmed by a second set of observations made at the

Washington National Airport. Several additional days of observations

from the Pittsburgh Airport may result in better estimates of the

parameters of the service time distribution.

Several areas for further study were broached in this chapter.

One of these is the difficulty in solving problems involving a large

number of states. Special techniques for solving large sparse systems
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of linear equations could be examined to permit direct solution of

models like the Erlang 19 model. Another problem is the extension of

the work of Adler and Naor (1969) to several classes of customers.

While this might require substantial analytical work, it would provide

a means of quickly bounding the results for any Erlang model. The

final problem introduced is perhaps the most interesting. The problem

is to design a schedule of arrivals that achieves an acceptable social

gain rate while keeping the maximum rejection probability for any

IIclass of customers below some upper bound. Models II and III can be

used to solve this problem as a part of a search technique or a new

expanded model can be developed.

AL -- 7777, z-za



CHAPTER VII

OTHER MODELS

In this chapter, three new models are developed to illustrate

that the semi-Markov approach used for Models I, II, and III can be

adapted to solve other related models. Although all three models have

M classecs of customers and an exponential server, the mode'.s could

easily be generalized to an Erlang server. The three models considered

are:

1) a Donpreemptive priority service discipline model,

2) a claa dependent service rate model, and

3) a nonpreemptive service discipline model with class

dependent service rates.

7.1 Nonpreem2tive Priority Se-vice Discipline Model

The assumptions and structure of this model are those of Model II

except that the service discipline utilizes nonpreemptive priorities

rather than position in line (first come first served) to determine

the order of service. Let class one have highest priority, class two

next highest, and so on. Within a class, the customers are served first

come first served. Since the priorities are nonpreemptive, the custom-
9

er in service is allowed to finish regardless of the priority of an
t

arrival.

The state space for this model is a vector a, where a is the

class of the customer in service and a is the number of class m
m

customers in the system. To illustrate the state space consider a

- - -
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two class example in state (2,1,2). Thus, there are two customers of

class two and one of class one in the system with one of the class two

customers in service. If the next event is the completion of a service,

the 3tate becomes (1,1,1) since the class one customer has priority

over the remaining class two customer.

Self-optimizing customers of class m will jcin the system if

their expected net benefit for joining is greater than zero. When the

state of the system is a, the expected net benefit of joining for a

customer of class m is

Rm- t (a) cm (7.1)

where t (mi) is the time the customer expects to spend in the systemm L

when he finds the system in state a. A class one arrival must wait for

all class one customers in the system to be served before he can be

served. In addition, he must wait for the customer in service to

finish; however, 1i the customer in service is a member of class one, I

he has already been counted with the class-one customers. E4 ation (7.2)

gives t 1 (a).
M

t('a) (a l+m +I a )I/ / (7.2)
MM`2 m,a0

where

-ma0 0, otherwise

A class two arrival must wait for all class one and class two customers

in the system to be served before he can be served. If the customer in

service is not a member of class one or two, one more customer must be

| U.
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added to thu list of customers who must be served before the class two

arrival. Thus,

M
t2 (a) (a +a + i+ M (7.3)

21 2 mw wa

In general, a class m customer must wait for the service of customers

in the system of his c.:ass and all classes of higher priority. In

addition, if the customer in service is of lower priority, he has not

been counted and must also be served before the class m arrival. Thus,

m M
ti(a) " ( ai + I + - 6Ja 0 )/ " (7.4)

Self-optimizing customers of class m will join the system if
m M

Rm - tm(a)C - Rm -( ai + 1 + = 6J,a0)Cm/P > 0m m TA m ~, 1 iJ-+l j,~
• (7.5)

If n is such that
Sm

R n Cl• -C o> - (n + 1)C /Pm mm s
m m

then,

n - FR 4C1 (7.6)

where the brackets indicate the greatest integer function. n Is the

8m

individual optimum balking point for class m customers. If an arrival

from class m finds

Q MI. a, + 1. 6 J < n s C17.7)
i-i j-m+! a0 m

he joins; otherwise, he balks.

- 7 .
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Since customers are served on the basis ni their priority, the

expected net reward f or a customer of class m who is in the system but

not in service is altered by later arrivi~ng customers of higher priority

who join the system. This may result in customers desiring to renege.

For instance, if a class m customer joined the system when

+l a a usn -

and the next event were the arrival of a higher priority customer, the

class m customer would want to leave the oystem to cut his expected

loss. Even though his time in the system has cost him money, he now

expects to lose more money by remaining in the system. If customers

are allowed to renege, another problem arises. The decision to renege

by a class m cuatcimer affects the reneging decision of a lover priority

customer. Thus, the presence or absence of information concerning the

reneging decisions of customers of higher priority can lead a customer

to make different decisions concerning reneging. Several individual

optimum models would result from different combinations of assumptions

about

1) whether or not to allow reneging, and

2) if reneging is allowed, whether or not to assume that

each customer knows the decision of every other

customer when he makes his own decision about renegý-&.

Since the social optimum problem is of principal interest, tht-se ideas

will not be pursued here.

As will be discussed later, the individual optimum balking point

for each class serves as an upper bound on the social optimum balking
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point for the class. 1This again provides a bound on the size of the

state space required f or the semi-Markov decision process formulation

of the social optimum problem. Since self-optimizing customers of

class m can join if as many as 118 - 1 customers of their own class
5

are in the system (this can occur if no customers of higher priority

are in the system and a class m customer is in service), a bound on

the size of the state space for the social optl~um problem is the

number of states such that a an ,for all m. Let a* be the set of
* m
all such states.

Recall that Section 5.4 points out that the social optimum

problem of Model III (as well as Models I and II) differs from the

self-optimum problem in that a self-optimizing customer fails to

consider the decrease in expected benefits Lo later arriving customers

caused by his joining the queue. This external economic effect also

occurs in this model but manifests itself in two ways. Not only does

the self-optimizing customer fail to consider the decrease in benefits

to later arriving customers of lower priority that his joining causes,

but he also fails to consider the decrease in benefits to customers of

lower priority who are already in the system (but not in service). The

formulation of the social optimum problem considers both forms of the

external economic effect.

* Consider an administrator who charges a joining customer for the

£ expected costs his joining causes customers present in the system as

1 Since the optimal policy has not been shown to be a control-
limit policy, n o needs to be redefined a5 one plus the maximum number
of customers in the system for which a class m arrival Joins the
queue.

___________
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well as for his own expected costs. Since the joining of a lowest

priority (class M) arrival affects no customers already in the system,

the expected system gain in state a due to his joining is

M
R* ( ai + l)Cm/V (7.8)

i-i

The joining of a customer from class M-1 causes all customers from

class M who are in the queue to remain in the system for an additional

service. Thus, the expected system gain in state a due to a class M-1

customer joining is

M-1
RM _I-i"-'i ai + 1 + SM,ao)•_i/P - (aM -6M,ao)•/ .

(7.9)

In general, the expected system gain in state a due to a class m

customer joining is

m M M
R m- ai + l+ 6 )CM/P-I (a - )C /U

il j-m+l ja 0  j-m+l i Ja j

(7.10)

This approach offers a means of internalizing the cost to customers

already in the system and avoids reneging since a customer's expected

costs are known at the time of his arrival and do not change with

later arriving custoers .

The other portion of the external economic effect, the decrease
a

in benefits to later arriving customers of lower priority caused by a

customer joining the system, is internalized as in Models I, II and III

through the social optimum objective function which is

max max OP qP (7.11)

PtC ACd Pec ACa aPs d s d Aca* a a

4 'J
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Again, only stationary Markovian decisiuns are considered and the work

of Der '1962) is used to limit the search to a nonrandomized rule.

0P is the steady state probability of the system occupying state a under
a

policy P. q_ is the expected gain per unit time the system is in state
a

a when policy P is in effect. The inclusion of the steady state

probabilities of occupying the various states allows the administrator

to consider the expected decrease in benefits to later arriving

customers of lower priority when deciding whether or not to admit a

customer. Equation (7.11) can be rewritten as

max gp . max k M (a)Xm f(a) (7.12)

PC sACd PECs Cd aea* a i

where k (a) is an indicator that is one if a class m arrival is admitted

to the system when the system is in state a and zero if not. f m(a),

which is the expected system gain in state a if a class m customer is

admitted, is given by Equation (7.10),

m M
f m(a) - R - (I + 1 + 6 )C /'4i-l J-m+l ,a 0  m

M
- l (a - )C•ao / (7.13)

J-m+l j,aO J

The formulation expressed in Equation (7.12) can be solved by policy

iteration as will be demonstrated by example. Theorem 4.3 can be

adapted to show that n - n . No attempt is made here to establish0 s
m m

the form of the optimal policy.

Consider a two class example with p - 4 and X" 2, R- 2, and

C 1 -3, Also, X2 = 4, R2- 1, and C - 2.5. From Equation (7.6),

n 2 and n - 1. Thus,
s s 2
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a* = (0,0,0), (Il,1,), (2,0,1), (1,2,0), (1,1,1), (2,1,1),

(1,2,1), (2,2,1)}

a* may contain several unnecessary states, states whose steady state

probability will be zero under the optimal policy. Although Equations

(7.7) and (7.13) can be used to eliminate some of these states, for

small examples like this one, it is probably easier to carry them

along.

Since there are two classes, there are four possible actions,

(0,0),, (1,0), (0,1), and (1,1). The transition matrix for each action

follows:

To State

(0,0,0) (l,1,0)(2,0,1)(1,2,0)(1,1,1)(2,1,1)(1,2,1)(2,2,1)

(0,0,0) ........
P(0,0) =

(1,1,0) 1 0 0 0 0 0 0 0

(2,0,1) 1 0 0 0 0 0 0 0

(1,2,0). 0 1 0 0 0 0 0 0

From
State (1,1,1) 0 0 1 0 0 0 0 0

(2,1,1) 0 1 0 0 0 0 0 0

(1,2,1) 0 0 0 0 1 0 0 0

(2,2,1) 0 0 0 1 0 0 0 0

A row of dashes indicates that the action cannot be chosen when the

system is in the state represented by the row. For action (0,0),

the next transition is sure to be the completion of a service.

4i 4



145

To State
(0,0,0) (1,1,0) (2,0,1-,(1,2,0) (1,1,1)(2,1,1) (1,2,1) (2,2,1)

(0,0,0) 0 1 0 0 0 0 0 0
P(l,0) -

(1,1,O) 0.67 0 0 0.33 0 0 0 0

(2,0,1) 0;67 0 0 0 0 0.33 0 0

(1,2,0) ........

From
State (1,1,1) 0 0 0.67 0 0 0 0.33 0

(2,1,1) 0 0.67 0 0 0 .J 0 0.33

(1,2,1) ........

(2,2,1)

If action (1,0) is chosen in state (0,0,0), the next transition is sure

to be the joining of a class one customer. For the other states in

which action (1,0) may be chosen, the entries are the result of the

service rate competing with the arrival rate.

To State

(0,0,0)(1,1,0)(2,0,1)(1,2,0)(1,1,1)(2,1,1)(1,2,1)(2,2,1)

(0,0,0) 0 0 1 0 0 0 0 0
(1,1,0) 0.5 0 0 0 0.5 0 0 0

(2,0,1) ........

(1,2,0) 0 0.5 0 0 0 0 0.5 0
From
State (1,1,1) - - - - - - -

(2,1,1) ........

(1,2,1) ........ -

(2,2,1) .....- - --

S.. .. °... ' ..... " "- • , , , r • "',r', • ••i A
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To State
(0,0,0) (1,i,0) (2,0,1) (1,2,0) (1,1,1i)(2,1,1) (1,2,1) (2,2,1)

(0,0,0) 0 0.33 0.67 0 0 0 0 0
P(1,1) -

(1,1,0) 0.4 0 0 0.2 0.4 0 0 0

(2,0,1)

(1,2,0)

From (Ii,1)
State

(2,1,1) - - - - - - -

(1,2,1) - - - - - -

(2,2,1)

If action (1,1) is chosen in state (1,1,0), the arrival rates for each

class compete with each other as well as with the service rate to

cause the next transition.

T_(k), the unconditional expected waiting time in state a under
a

action k, is simply the reciprocal of the transition rate out of state

a under action k. Thus,

T(0,0) - - '(1,0) - 0.5 :T(0,i) - 0.25 , t(1,l) -0.167

0.25 0.167 0.125 0.1

0.25 0.167 - -

0.25 - 0.125

0.25 0.167 -

0.25 0.167

0.25

0.25 -

S . . .. .. .. , T .: , . . "•, ",•- ; " . :,. .' ,, ' ,. ,, ': , • ;'Z ," ! ' •: .) " . . ' " "
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Tle components of all vectors for this example correspond to the states

as listed in a*; that is, component one corresponds to state (0,0,0),

component two corresponds to state (1,1,0), and so on.

If b(0,0) is the matrix of expected rewards for transitions

between the various states under alternative (0,0), b(0,0) is the null

matrix since no customers are allowed to join under alternative (0,0).

The following matrices of expected rewards for transitions under the

other alternatives were found using Equation (7.13).

To State

(0,0,0)(1,1,0) (2,0,1) (1,2,0) (1,1,1) (2,1,1) (1,2,1) (2,2,1)

(0,0,0) 0 1.25 0 0 0 0 0 0
b(l,0) -

(1,1,0) 0 0 0 0.5 0 0 0 0

(2,0,1) 0 0 0 0 0 0.5 0 0

From (1,2,0) - - - - - - - -

State
(1,1,1) 0 0 0 0 0 0 -0.125 0

(2,1,1) 0 0 0 0 0 0 0 -0.25

(1,2,1) ........

(2,2,1)

If the only nonzero entries in a row of b(k) are negative, action k can

be eliminated from consideration when the system is in the state repre-

sented by the row because action (0,0) will dominate k in the policy

improvement section of the policy iteration algorithm.

r. -,



148

To State
(0,0,0) (1,1,0) (2,0,1) (1,2,0) (1,',1) (2,1,1) (1,2,1) (2,2,1)

(0,0,0) 0 0 0.375 0 0 0 0 0
b(0,1) -

(1.,I,0) 0 0 0 0 -0.25 0 0 0

(2,0,1) - - - - - - - -

(1,2,0) 0 0 0 0 0 0 -0.875 0
From
State (1,1,1) . . . . . . . .

(2,1,1) - - - - - - - -

(1,2,1) - - - - - - -

(2,2,1)

To State i1

(0,0,0) 0 1.25 0.375 0 0 0 0 0
b(1,1) -

(1,1,0) 0 0 0 0.5 -0.25 0 0 0

(2,0,1)

(1,2,0)
From

(2,1,1) - - - - -

(1,2,1)

(2,2,1)

The components of the vectors of expected rewards per transition

are found from

r (k) - _k_ (k)b_ _(i)
"a' "a* a' ,a" a',a"

.4
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where a' and a" are used to denote the state before and after a

transition, respectively. Recall that a* is a set that contains all

states that are required for the social optimum problem. For this

example,

r(0,0) - - , r(1,0) - 1.25 , r(Ol) 0.375 , r(ll) 0.67' "

0 0.167 -0.125 0

0 0.167 - -

0 - -0.438

0 -0.042 -

0 -0.083

0

0

The components of the vector of expected rewards per unit time in

state a under action k are found from

c_(k) - r_(k)/t_(k)

a a a

Thus,

q(0,0) - - , q(1,0) 2.5 , (0,1) U 1.5 , 1(ll) 4

0 1.0 -1.0 0

0 1.0

0 -3.5

0 -0.25

0 -0.5

0

0

............- *
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The optimal policy found using Algorithm C.1 (Appendix C) is

P* (1,0)

(1,0)

(1,0)

(0,0)

(0,0)

(0,0)

(0,0)

(0,0)

which yields g 1.714 and

S- 0.57

0.29

0.00

0.14

0.00

0.00

0.00

0.00

For this example, it is socially optimal for class one to dominate the

system to the exclusion of class two. Even if a class two customer

arrives to find an empty system, he is turned away since the adminis-

trator expects the customers to achieve a higher gain rate by leaving

the server idle until a class one customer arrives.

1 U

r
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7.2 Class Dependent Service Rate Model

The assumptions and structure of this model are the same as for

Model II except each class, m, has its own service rate, pm" For an

arrival to be able to compute his expected time in the system, he must

know the number of each class of customers in the system. As illus-

trated in Section 4.3, this requirement together with a first come

first served queue discipline leads to a state space that gives the

class and position of each customer in the system. Thus, the state of

the system is given by m - (min, mi2 , ... , mn, ... ), where mj is the

class of the customer in position J. The customer in position one is

in service, the customer in position two is first in line, and so on.

Self-optimizing customers of class m will join the system if

their expected net benefit for joining is greater than zero which is

their expected net benefit for balking. The expected net benefit of

a class m customer joining when the system is in state m is

M
R -{ (m)vI+/)/ i1)(i/ ml (7.14)

where a (m) is the number of class i customers present in state m.

Since

i(m) 6(7.15)
i ~mJ,,

where

a j if in -i
i{ otherwise,

a class m customer will join the system if m is such that Equation

(7.14) is nonnegative or
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M

[ {ai(m/I}; < R /C - I/•m (7.16)
m m m

Since the service rate varies with customer class, Equation (7.16)

cannot be reduced to a balking point in terms of the number in the

system like n . Rather, for each class m, let S be the set of alls m
mm such that Equation (7.16) holds. Thus, if the system is in state m,

a self-optimizing customer of class m joins if mrnS and balks otherwise.m

It will be argued later that the set of states in which a class

m customer acting in a socially optimal manner joins the queue is a

subset of the set of states in which he would join if he were acting

in an individually optimal manner. Thus, if 0 is the set of all
m

states such that customers of class m who are acting in a socially

optimal manner join the system, then 0 _ S . A little additional work

must be done to bound the state space required for the social optimum
M

problem. U S may not contain enough states since the states thatm=l m

can be reached from states belonging to S through the joining of am

class m customer must also be included to bound the social optimum

state space. Let S' contain all states in S plus all states that canm m

be reached from the states of S through the joining of a class m

customer. The required state space for the social optimum problem can
M

then be bounded by U S'.
m-1 m

W Again, a self-optimizing customer fails to consider the decrease

in benefits to later arriving customers caused by his joining the queue.

This external economic effect is internalized in the formulation of the

social optimum problem which is

max max 0M P P

s d s d mCU S' m m (7.17)
mm-1
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Again, only stationary Markovian policies are considered and the work

of Derman (1.962) is used to limlt the search to a nonrandomized policy.

P0 is the steady state probability of the system occupying state m
m

under policy P. q is the expected gain per unit time the system is
m

in state m while policy P is employed. Equation (7.17) can be

rewritten as

max max 0P l kr()mfm(m)
*PEC AC 9 e m kM() m

sCd s d M mS m1 m
r I k m (7.18)

rn-1

where k ((m) is one if class m is admitted under policy P when them

eysLem is in state m and Tero if not. f m(m), the expected system gain

ii' a class m customer is 41:itted when the system occupies state m,

fcllow3 from Equation (7.i+4, as

M
f (m) R- (6i /1} + (/11m))c . (7.19)

m m i m

Although the state space is qvite cumbersome, the sert-Markov formula-

ticn given by Equation (7.18) can be solved by policy iteration.

To show that 0 - S consider first the quantity t , where
m m s

t = R /C - i/. S contains all states for which the sum of the3 m m m m m

expected service times of all customers in the system is no greater

than t {see Equation (7.16)1. If t is defined to be the maximum
m mamount of expected service time in the system for which a social

optimizing cuntomer of class m joins, then, t t is analogous to
0 sm m <

n 0- n s. Theorem 4.3 can be adapted to show that t 0- t .Since

m m m Sm
the definition of 0 implies that 0 is the set of all states for which

m m

the sum of the expected service times is no greater than t ,0 S
0 m m
m
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7.3 Nonpreemptive Priority Service Discipline Model with Class

Dependent Service Rates

This model is a combination of the two previous models. The

assumptions and structure are the same as Model II except that:

a) a nonpreemptive priority service discipline is used, and

b) the mean service rate varies with customer class.

Class one is of highest priority, class two of next highest, and so on.

Within a class, the service discipline is first come first served.

Since the priorities are nonpreemptive, the customer in service is

allowed to finish no matter what tha priority of an arrival. The mean

service rate of class m is Pm, m - 1, ... , M. Since the model has a

nonpreemptive priority service discipline, the state space can again

be a vector a, where a0 is the class of the customer in service and a

is the number of class m customers in the system.

Self-optimizing customers of class m will join the syst.= if

their expected net benefit for joining is greater than their expected

net benefit for balking which is zero. For a class m arrival, .e |

expected net benefit of joining when the system is in state a is

R - t (a)C , (7.20) Ii
m m m

where t (a) is the time the arrival expects to spend in the system ifm

he joins when it is in state a. Since class one is of highest priority,

a class one arrival must only wait for the customer in service plus any

class one customers already in the system. If a class one customer is

in service, he should not be counted twice. Thus, the time a class one

arrival will expect to spend in the system is given by

;,j 1. i-jjj
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M

t (a) = (a + 1/)i + 1 6ma /pm (7.21)
M-2 ,a0

where 6 -ao 1 if a = m
m,a 0  0

otherwise

A class two arrival must wait for all class one and class two customers

present in the system plus the customer in service if he has not

already been counted. Thus,

M
t2(a) - a1/P1 + (a2 + 2)/U2 + 36 /a0 (7.22)

2 m-3 08

In general, a class m arrival must wait for all customers of equal or

greater priority who are present in the system plus the customer in

service if he has not already been counted. Thus, for any class m,

m-i M
t(a) - a ai/Vi + (am + 1)/11m + •-m+l 6Jao/11 " (7.23)

i-i lr~ ~ 0 j

Self-optimizing customers of class m will join the system if

M-i
Rm - t-m WCm a{ a/11i + (am + 1)/pm

Sa /1 }C1 > 0 (7.24)J-m+l 'a 0/ j

Equation (7.24) can be written as

m M
( ai/.i + [ /1) - RIG -1/u . (7.25)
i-l ~ J-m+l Ja 0 /Jm

Since the mean service rate varies with customer class, Equation (7.25)

cannot be reduced to a balking point in terms of customers in the
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system like n ; however, it does express a maximum amount of expected
s
m

service time that can be ahead of a class m arrival and still have him

Join the system. ts - R M/C - 1/1um is the maximum expected time a
m

class m customer can wait for his service to begin and still find it

profitable to join the system.

Since the customers are served on the basis of their priority,

the expected net reward for a class m member of the queue (i.e., in the

system but not in service) is altered by the joining of a customer of

higher priority. This again raises the problem of reneging and the

various assumptions that could be made (see Section 7.1).

Let S be the set of all states such that Equation (7.25) holds.m

It will be argued later that if t is the maximum expected time a
0
m

class m arrival can wait for his service to begin and still find it

socially optimal to join the system, then, t - t . Thus, if 0 iso s m
m m

the set of all states that a class m arrival expects to wait no more

than t for his service to begin, then, 0 5S . Let S' contain the
0 m m m

states '.-hat are elements of S together with the states that can 1.e

reached Crom the elements of S through the joining of a class m

M m

customer. U S' provides a bound on the state space required for the
m~l m

social optim'!m problem.

Self-optimizing customers ignore the decrease in net benefits

that their joining causes customers of lower priority either present

in the system or yet to arrive. Both of these costs will be incorpor-

ated into the formulation of the social optimum problem. The first

will be charged to the arrival and the second will be accounted for in

the objective function for the sc,!ial optimum problem.
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Consider an administrator who charges a joining customer for

the expected costs he causes other customers already in the system as

well as for his own expected costs. Since the joining of a class M

arrival affects no customers present in the system, the expected gain

in state a due to his joiaing is

M-1
RM- {( ai/Pi) + (am + l)/I}C. (7.26)

i-i

The Joining of a class M-1 customer affects only class M customers who

are in the queue. Thus, if the system is in state a, the expected

system gain due to a class M-1 customer joining is

M-2
-I - { a ai/p i + (aM-I + 1 )/UM-1 + SM'a0/N}CM-1

14 Ma0  HM-l(7.27)
-(aM - 'M,ao0)CM/•~ . 7.17

In general, if the system is in state a, the expected system gain due

to a class m customer joining is

m-1 MR'- {[ ai/i + (a + l)/lm + a /11 c
m . il , m

M
S- {(aj - )C/P} ) (7.28)

J-m+l 0

This method of assigning costs avoids reneging since a customer's

expected cost is not changed by later arrivals joining the queue.

The objective function for the social optimum problem is

max g max
PEC•Cd dP PeCs'C M _i q_ (7.29)dd a U S', a a

mlml
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As before, only nonrandomized, stationary Markovian policies need to
PP

be considered. 0P and q are, respectively, the steady state probabil-
a _a

ity of occupying state a and the expected gain per unit time in state

a under policy P. The inclusion of the steady state probabilities of

occupying the various states considers the expected decrease in

benefits to later arriving customers of lower priority when deciding

whether or not to admit a customer. Equation (7.29) can be written as

M
max - max kp k (a)X f (a)
PECCIC gP PeCnC I M aI m mm

S d a Ij S' a m-i
ml m (7.30)

where again, k m(a) is one if class m is admitted under policy P when

the system is in state a and zero if not. f m(a), the expected system

gain due to a class m customer joining when the system is in state a,

follows from Equation (7.28) as

m-1 M
f () - R - { a ai/Pi + (am + 1)/lm + 7 . ,a1 }C

M
I (a- J c/i ,a lm
j.M+l J0

(7.31)

Tht solution of the semi-Markov process formulation in Equation (7.30)

by pollcy iteration will be illustrated by an example. Theorem 4.3

can be adapted to show that, for all m, to - t and thus, 0 C_ S
m sm m m

Consider the same two class example used in Section 7.1, but

let each class have its own service rate. The mean service rates and

other parameters for the example are given in Table 7.1. The maximum

expected service time a self-optimizing customer of class one can wait

for his service to begin and still join the system is

4 .... U
1- •"'i •••a• -'• k• ,w , ,"•i•%• '', • ••••-:'!'i,.•<•Ji- e .,,.• L
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t -R/C - 1/1 - 0.344. Similarly, t - 0.208. Thus,
S 1 1 1

SI ((0,0,0), (1,1,0), (2,0,1)}, and S- (0,0,0)$ (1,1,0), (2,0,1),

(1,2,0), (2,1,1)1. Also, S2  {(0,0,0), (2,0,1)1, and S2 ((0,0,0),

(2,0,1), (2,0,2)1. The state space for the social optimum problem is

2
* a subset of 2j S' - {(0,0,0), (1,1,0), (2,0,1), (1,2,0), (2,1,1),I~~i m= m'

(2,0,2)1.

TABLE 7.1

Parameters for the Example

Class R Cm m m

1 2 3 2 3.1

2 1 2.5 4 5.2

The transition matrices for the four possible actions follow:

To State

(0,0,0) (1,1,0) (2,0,1)(1,2,0) (2,1,1) (2,0,2)

F(0'0)P(,) (1,1,0) 1 0 0 0 0 0

(2,0,1) 1 0 0 0 0 0
From
State (1,2,0) 0 1 0 0 0 0

(2,1,1) 0 1 0 0 0 0

(2,0,2) 0 0 1 0 0 0

Again, a row of dashes indicates the action cannot be chosen when the

system occupies the state represented by the row. For action (0,0),

the next transition is sure to be the completion of a service.
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To State

(0,0,0) (1,1,0) (2,0,1) (1,2,0) (2,1,1) (2,0,2)

(0o0,0) 0 1 0 0 0 0
P(1,0) =

(1,1,0) 0.61 0 0 0.39 0 0

(2,0,1) 0.72 0 0 0 0.28 0
From
State (1,2,0) - - - - - -

(2,1,1) - - - - - -

(2,0,2)

If action (1,0) is chosen in state (0,0,0), the next transition is

sure to be the joining of a class one customer. For other states in

which the action may be chosen, the entries are the result of

competition between the rate of service for the customer in service

and the arrival rate of class one.

To State

(0,0,0) (1,1,0) (2,0,1) (1,2,0) (2,1,1) (2,0,2)

(0,0,0) 0 0 1 0 0 0
P(0,1) =

Frm (2,0,1) 0.57 0 0 0 0 0.43

State (1,2,0) - - - - - -

(2,1,1) - - - - - -

(2,0,2) - - - - - -

i. !

~,
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To State

(0,0,0) (1,1,0) (2,0,1) (1,2,0) (2,1,1) (2,0,2)

(0,0,0) 0 0.33 0.67 0 0 0
P(lI) "

(1,1,0) ......

(2,0,1) 0.46 0 0 0 0.18 0.36
From

State (1,2,0) - - - -

(2,1,1) ...... -

(2,0,2) .......

If action (1,I) is chosen in state (2,0,1), the class arrival rate of

each class and the service rate of the customer in service compete to

cause the next transition.

T_(k), the unconditional expected waiting time in state a under
a

action k, is the reciprocal of the transition rate out of state a under

action k. Thus,

T(0,0) = - , T(1,0) - 0.5 , T(0,01) - 0.25 , T(1,l) 0.17'.

0.32 0.20 - -

0.19 0.14 0.11 0.09

0.32

0.19

-, ~0.19--

A

The components of all vectors for this example correspond to the
2

states as listed in U Sm.
-i m

M-1,~t. .
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The matrix of expected rewards for transitions between states

under alternative (0,0), b(0,0), is the null matrix since no customers

may join the system. Equation (7.31) is used to find the entries in

the matrices of expected rewards for transitions under the other

alternatives. For this example,

To State

(0,0,0) (1,1,0)(2,0,1) (1,2,0) (2,1,1) (2,0,2)

(0,0,0) 0 1.03 0 0 0 0

b(1,0) -
(1,1,0) 0 0 0 0.06 0 0

(2,1,0) 0 0 0 0 0.46 0

From
State (1,2,0) - - - - - -

(2,1,1)

(2,0,2)

To State

(0,0,0) (1,1,0) (2,0,1) (1,2,0) (2,1,1) (2,0,2)

(0,0,0) 0 0 0.52 0 0 0 j
b(0,1)-

(1,1,0) - - - - - -

(2,0,1) 0 0 0 0 0 0.04

From
State (1,2,0)

S(2,1,1) -

(2,0,2) -
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To State

(0,0,0) (1,1,0) (2,0,1) (1,2,0) (2,1,1) (2,0,2)

(0,0,0) 0 1.03 0.52 0 0 0
b(1,1) -

(1,1,0) ......

(2,0,1) 0 0 0 0 0.46 0.04
From
State (1,2,0) . . . . . .

•(2,1,15 ...... -

(2,0,2) ......

The components of r(k), the vector of expected rewards per

transition under action k, are found from

r_ (k) 2 j 2 (k)b- - (k)
at a U St ata" a,a"

where a' and a" are, respectively, the state before and after a

transition. Here,

r(0,0) - - , r(1,0) - 1.03 , r(0,1) - 0.52 , r(i,l) - 0.69

0 0.03 - -

0 0.13 0.02 0.10

0

0

L 0 -

The components of the vector of expected rewards per unit time in

state a under action k are found using

q_() - r_(k)/T_(k)
a a a

.. .S•,,•4,,,..",.i
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Hence,

q (0,0) - - , q(lO) - 2.06 , q(0,1) = 2.08 , q(1,1) - 4.14

0 0.13

0 0.91 0.15 1.06

0

0

0

The optimal policy found using Algorithm C.l is as follows:

i: ~~~P* (i),

(0,0)

(0,0)

(0,0)

(0,0)

1(0,0)¼
which yields g - 1.715 and • 0.4141

0.267

0.319

0.0

0.0

0.0

For this example, it is socially optimal for class one and class two

customers tr join the system only if it is empty.

7.4 Conclusion

The models of this chapter require a more complex state space

than Models I, II, and III. The state space for the nonpreemptiv;e
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priority models is tractable as long as the number of classes remains

small. However, the state space for the model of Section 7.2 is

tractable only for extremely small problems.

The thrust of this chapter has been to demonstrate that the

approach used in Models I, II, and III can be extended to other models.

That is, once a state space has been defined that carries the necessary

information for memoryless transitions and allows computation of the

expected net benefit of joining, the social optimum problem can be

formulated as a semi-Markov decision process. Also, the individual

optimum problem can be used to bound the number of states required for

the policy iteration solutic.i technique. No attempt has been made to

draw any conclusions about the form of the optimal policy.

i



CHAPTER VIII

SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FURTHER RESEARCH

In this chapter, the work presented in this paper is summarized

and a few conclusions are drawn about the models that have been

developed. Also, a few potential uses of the models beyond that

presented in Chapter VI are listed. Finally, some suggestions are

offered for further research.

8.1 Summary and Conclusions

The models of this paper are extensions of the model studied by

Naor (1969). One of the major contributions of Naor's work was the

suggestion that not every arrival at the service facility would want

to be or be allowed to be served. Naor's work was complemented by

that of Yechiali (1971) who solved a slightly more general problem.

Yechiali's contribution was the formulation of the elementary problem

as a semi-Markov decision process. Some other authors [e.g., Stidham

(1978)1 have subsequently proposed that the choice facing an arrival

be the option of joining a system with the cost structure following

Naor or joining an alternate system. The alternate system might be

either a self-service facility or a system in which the cost structure

is simply a fixed fee for service. This proposal is most appealing

when all cusLomers eventually require service as is the case with

landing aircraft that are in flight. Such an alternate system can

easily be incorporated into the models of this paper. (The effect of

the alternate system is to change the expected net benefit of balking

IJI
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from zero to the expected net benefit of service in the alternate

system.)

The sema-M::ko- anroach has been used in this paper to extend

the modul 'if Naor to several classes of customers, Model II. For

Model II, the optimal policy tor social optimizing customers was shown

to 6L, a vector of forced balking points, n . Thus, a class m arrivalo

joins the system only if he finds the number of customers in the

system to be less than n * the balking point for his class. The
m

optimal policy for self-optimizing customers was also shown to be a

vector cf balking points, n . Finally, it was shown that the social

<

and self-optimum balking points for each class are related by n n
m m

which facilitates solution of the social optimum problem by providing

a TIounr' on the required state space. Both a policy iteration and a

linear programmiag approach were presented as solutions of Model II.

The semi-Markov formulation of Model II was generaliz.ed in

Chapter V to Model III which inccrporates Erlang service times. This

generalization enhances :he usefulness of the model by providing more

flexibility in representing the distribution of service tiues. The

Erla-3 problem was solved by employing the method of phases which

replaces a single Erlang h service time with the mathematically

equivalent sum of h independent, ideTLticalv distributed, exponential

service times. Although this approach enables the policy iteration

and linear programming solution techniques of Model II to be applied

to ..adel 1II, it can lead to an optimal policy that forces the

administrator to ideitify the various phases of uervice. Since, in

general, the phases are not physical attributes of the system, the
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solution found may not be implementable. A heuristic procedure was

suggested for determining a good solution that does not require the

identification of the phases of service. In addition, a mixed integer

progrmming formulation was presented that, if solved, would identify

the optimal implementable solution. Vne set of states required for

the social optimim problem was again shown to be a subset of the set

of states required for the individual optimum problem.

In Chapter VI, Models II and III were applied to the landing

queue at the Greater Piztsburgh International Airport. Data available

from the FAA and otf'er easily accessible sources were used to specify

the required parameters for five classes of customers. Data taken at

the Pittsburgh Airport led to a rather cumbersome Erlang 19 distribu-

tion of service times. This pointed out that Model III can create

difficulties for both the policy iteration and mixed-integer pro-

gramming solution methods by requiring a large number of states.

Although sj.ecial techniques for solving such large problems exist,

this particular problem was solved by bounding the Erlang 19 results

between the results of an Erlank 8 model and those of a deterministic

service time model. The teterministic service time model used is an

approximate model based on the work of Adler and Naor (1969).

The semi-Markov approach was extended to three new models in

Chapter VII to illustrate the versatility of the approach. The

nonpreemptive priority discipline models (one with and one without

class dependent service rates) require a state space that gives the

number of each class of customers in the system together with the

class of the customer in service. This new state space requires more
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states than that of Model II f or the same size problem and thus,

will tend to cause more computational difficulties for both the

policy iteration and linear programming solution technique. The other
3s

V model, a first come, first served model with class dependent service

rates, requires a state space that specifies the class of the

customer in every position in the system. This state space compounds

the computational problems even further. For all three models, the

state space required for the social optimum problem is again a subset

of the state space required for the individual optimum problem.

The semi-Markov decision process formulation used in this paper

applies to a broad range of queueing control problems as illustrated

by the variety of models solved in this paper. The semi-Markov

formulation of Models II and III and each of the models in Chapter VII1

can be solved using a technique based on policy iteration or linearI
programming. The solution technique may have to be tailored to the

problem as was the case with Model III. When a large number of states

is involved, the solution technique may encountcr computational prob-

lems; however, special techniques such as the bounding approach of

Chapter VI can often be applied to get useful results even in these

cases.

For all models considered, the social optimum balking point (in

terms of customers or expected service time in the systemn) for each

class, m, is pn greater than the self-optimtum balking point. This

characteristic of the models is useful in implementing the solution

techniques for the social optimum problem since it provides a bound

on the state space required for the social optimum problem. The
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control-limit property of the optimal solution to Model I carries over 1'
to Model II. The form of the optimal solution was not investigated

thoroughly for the other models.

Models II and III can be successfully applied to the problem uf

deciding which classes of aircraft to admit to the landing queue of an

airport. The results are 'useful in planning the schedule of arrivals

at the airport.

8.2 Potential Uses of the Models

In Chapter VI, Models II and III were used to determine an

optimal policy for admitting aircraft .o the landing queue of an

airport. The models can be applied to other similar problems. For

instance, the service might be the unloading of an oil tanker (or a '
merchant ship or a truck). The tankers could be broken into classes

based on capacity or type of crude oil. A policy of admitting tankers i
to the queue at the port would be sought so that the gain rate of all

tankers acting as a group is maximized.

Systems modeled need not have customers that physically line

up. Consider the problem of using a single train or truck fleet to

haul grain from elevators throughout Nebraska to Kansas City. In this

problem, the server moves to the customers and the queue is a schedule ~

of elevators the train is committed to serve. The classes of customers I
might be based on elevator capacity, location, or type of grain. The

problem remains that of determining a policy of admitting customers to

the queue (list) so that the gain rate of all customers taken as a

whole is maximized.

Some problems that cannot be solved directly using Models 11

and III can be solved by combining the models with other techniques..
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For instance, Chapter VI suggested combining Model II or III with a

search technique to determine a schedule of arrivals at an airport

which achieves an acceptable gain rate for the customers while keeping

the probability of rejection for each class below some specified bound.

A slightly different example is the problem of choosing the

number of computer terminals allowed to tie into a computer system.

The classes of customers might be based in type of user account or on

type of service demanded. Choosing the number of terminals allowed

for each class does not directly determine queue size but rather

determines the size of the population of each class of customers. If

the class arrival rates can be determined a~s a function of class

population, then a search technique could be used in combination with

Model II or III to find a socially good policy for allowing terminals

to tie into a computer system.

Still another similar application is that of choosing the numberI

of skiers to admit to a ski resort on a holidy or weekend. The

customers might be classified by skling ability which would indicate

which parts of th~e ski area they would be likely to use. The service

demanded is the use of a ski lift to carry the skier to the top of

the slope. Since most ski areas have more than one lift, class

arriival rates must: be determined for each lift as a function of

population. Again, a search tehcnique could be combined with M~ode~l

IT or III to find socially good policy of admitting skiers to the ski

area.
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8.3 Suggestions for Further Research

The work described in this paper can be carried forward in

several different directions. The heuristic procedure introduced to

provide a good solution to Modeill- assumes that the optimal policy is

4a control-limit policy for each class. The assumption is based on the

fact that the expected net benefit for joining decreases as the

number in the system increases. Implementing a policy that is not

a control-limit policy would force a customer to balk when i are in

the system but allow him to join when i + 1 are in the system which

yields the customer a simaller expected net benefit than i. Al~though

this argument supports the control-limit assumption, a proof of the

control-limit property would lend more credibility to the heuristic

procedure.

The expected net benefit of joining for customers in the first

come, first served, class dependent service rate model of Chapter VII

decreases as the expected service time ahead of the arrival increases.

Arguments similar to those used above for Model III can also be used

to support the assumption that the opttnal policy for each class

establishes a control limit in terms of the expected service time

ahead of an arrival. The nonpreemptive priority models of Chapter VII

charge an arrival for both his own expected costs and the increase in

expected costs he causes customers of lower priority already present

in the sybtem. This complicates the definition of a control limit

even further since the expected net benefit of joining decreases with

an increase in the number of customers of lower prtority in the system.

The form of the optimal policy needs to be investigated further for
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each of the three models of Chapter VII. In addition, use of the

three models would be facilitated by adapting the program of Appendix

D to handle them.

Fi On a broader scope, additional work should be done to determine

the range or variety of models to which the semi-Markov approach

applies. Subsets of these models should be sought for which the

social optimum state space is contained in the individual optimum

state space. Also, the subsets should be identified for which a

control-limit policy is optimal. Further, the results of the models

of this paper should be compared with r,,sults of other similar models

such as those of Balachandran and Schaefer (1975, 1976) that use

expected queue length rather than number of customers in the system

"to determine the expected costs of joining.

Some refinements and extensions that have been applied to

Model I can also be applied to Models I and III. For example, tolls

similar to those used in Model I to implement the socially optimal

policy should be developed for Moael II by using Equation (3.25) to

find a toll for each class of customers. Also, the approaches used

by Knudsen (1972) and Yechiali (1972) to extend single class models

to include multiple servers could be tried on the multiclass models

as well.

Finally, the work presented in this pdper has touched several

other interesting problems that should be investigated. One such

problem is the expansion of the deterministic service time model of

Adler and Naor (1969) to several classes of customers. Another is

the development of a model in which the administrator can control
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customer arrival rates through population size rather than queue size.

One final problem is the use of objective functions other than the

individual and social optimum ones used in this paper. One such

objective function used by Naor (1969) assumes that the admini~trator

r is trying to maximize the sum of the tolls he collects from joining

[ customers.

[. Certainly, many other areas for further research exist.

However, these few are listed to give the researcher some idea as

to where he might start.
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APPENDIX A

GLOSSARY OF NOTATION

This glossary defines notation used throughout this dissertation.

Mathematical symbols and operators, such as the greatest integer

function [., are not included. Also missing is some notation that

is used only locally for one idea or development. The symbols are

listed in alphabetical order with Greek symbols appearing at the end

of the list for their English equivalent; for example, p is listed at

the end of the r's.

a (a 0 , al, ... , aM), state space for the nonpre-

emptive priority models, where a is the class

of the customer in service and a is the number
m

of class m customers in the system '

B Large numerical value required to develop the

either/or constraints in the mixed integer

program (
bij(k) Expected reward for a transition from state i

to j when action k is chosen i

C Cost per unit time in the system for customers

in a single class problem

C Class of control-limit policies
cz

C Class of nonrandomized policies
d

Cdck Class of deterministic control-limit policies

C Cost per unit time in the system for customers
m

of class m
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C Class of stationary Markovian policiesS

Ct Class of all policies

d(h) Policy chosen in iteration h of the policy

iteration altorithm

Di(k) Stationary probability that action k is

chosen when the system is in state i

Di(k) Stationary probability that action k is

chosen under policy P when the system is in

state i

.D(H 1 , m )+._ Probability that action k is chosen under

policy P at time m given history Hm_1 and

present state Im

A Decision made by the nth arrival (A = 0)
n n

if balk, 1 if join)

Tn Number of customers in the system at the
th

instant of the n arrival

f (i) Expected net reward to a joining customer of
m

class m if i customers are in the system

g Expected net benefit rate or gain rate of the

system

9N Expected gain rate using the formulation given

by Naor (1969)

gp Expected gain rate of the system under policy P

gT Expected gain rate using the formulation which

delivers the reward when a customer joins the

system but distributes the charges for time in 1

the system throughout the customer's stay

H
- -i- _ ------ J. ~-- ~.--. 7 ---
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g-y Expected gain rate using the formulation given

by Yechiali (1971)

h Erlang number

H History of the process through arrival m
m

4 k (il, k 2  ... , kM), a possible action, where A

k - 0 if class m balks and 1 if it joins
r• m

k (i) Indicator which is zero if class m balks when
m

"the state of the system Is i and one if class m

cjins when the state is i

L Expected number of customers in the system.

I* .Contribution of class m to the expected number

of customers in the system

.X Arrival rate of customers in the single class

problem

llX Arrival rate of class m customers
m

Effective arrival rate of customers in the sing.

class problem

Effective arrival rate of class m customers I
X(i) Arrival rate of customers in the single class

problem when the system is in state i

X (i) Arrival rate of class m customers when the 2
m

system is in state i

M Number of classes of customers

m (ml1 2, ... , mi, ... ), state space which gives

the position of customers in the system, where

m indicates the class of the customer occupying

position J

A).,-
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viService rate of the single server

Im Service rate for class m customers in the class

dependent service rate models

n (nI, n 2, ... ,m), vector of balking points(1(noI n, ... , n), vector of forced balking

points for the social optimum problem

n (ns, ns, ... , n ), vector of balking points
s l 2 SM

for the individual optimum problem

a* Largest component of ns s

0 Set of states for which a social optimizing
m

arrival from class m joins the system

P Policy for controlling the system

P (k) Probability of a transition from state i to j
ij

under action k

S1 Steady state probability that i customers are

in the system under policy P

Q Fixed payment to an arrival who does not join

the system

q Amount paid per customer in the system to an

arrival who does not join the system

-(k) Expected net reward per unit time in state i

under action k

R Reward for service of a customer in the single

class problem

ri(k) Expected reward per occupancy of state i under

action k

* -. ,• ,,. ... ".• . ,•. . -• -:•. ,-... • . .. . . .. = .
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R Reward for service of a member of class mm

RST Remaining service time for the customer in

service

p Xv/, the traffic intensity

S Class of stationary control-limit policies of

infinite order

Sk Class of stationary control-limit policies of

order k

S Set of states for which a self-optimizing arrival
m

from class m joins the system

S' State space required for class m in the
m

individual optimum problem

am(m) Number of customers of class m present in state m

T Length of a service for the deterministic model

Ti Transition rate out of state i

tn( a) Expected time in the system for a class m

arrival who finds the system in state a

t 0Maximum amount of expected service time ahead of
m

a social optimizing class m customer for which H

he will join the system Ii

t Maximum amount of expected service time ahead of

a self-optimizing class m customer for which he

will join the system

'r(k) Vector of unconditional expected waiting times

under action k

-.'.
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Ti(k) Unconditional expected waiting t';.,-..

under action k

T (k) Expected holding time in. state i under action kij

given the next transition is to state j

vi Relative value of the system starting in state i

v Continuous variable representing the forced0

balking point for the single class social

optimum problem

v Continuous variable representing the balkingS

point for the single class self-optimum problem

Yi Cost per unit time of operating the system in

state i

S(k) /ti(k), decision variable in the linear

programing formulation of a semi-Markov

decision process

Z,(k) Binary variable that indicates whether or not

action k is chosen when i customers are in the

system (used in the mixed integer programing

formulation of the Erlang service time problem)

__ _ _ _ ___ __i

'i?-
,r,



APPENDIX B

PROOFS OF SOME ASSERTIONS ABOUT MODEL I

Naor (1969) states some properties of Model I but does not

provide supporting proofs. The following three properties are

established in this appendix:

1) g(n), the socially optimal gain rate is discretely

unimodal in n, the forced balking point.

2) v increases with v , where v - RV/C and v and

v are related by Equation (3.5).

3) v - va, where again v0 and vs are related by

Equation (3.5).

B.1 Proof of Property One

Property (1) is important becaune it guarantees that a local

optimum is a global optimum.

Theorem B.l: g(n) is discretely unimodal in n.

Proof: Define Ag(n) to be g(n) - g(n - 1). Since
> 

>

R C/P, g(1) a 0. This together with g(O) - 0
>I

implies that Ag(l) > 0. Thus, to establish the

theorem, it is sufficient to show that if Ag(n) - 0,

then Ag(n + 1) < 0. Equation (3.3) is provided below

for convenience.

Ag(n) - Rl -n(l - p)/(l - pn+)

- C{P/(l - P) - (n + l)P n+l( - p n+)}

I
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Use of Equation (3.3) for g(n) and g(n - 1) yields

g(n) ,XR, n-l(1 - p)/(l - P) n pn(1 P)/(- Pn+l)}

- C{npn/(l - pn) - (n + )Pn+/(- pn+l)}

,pn-l(1 . p)2/{(1 _ pn)(1 _ pn+)

- Cpn{n(l - p) - p + pn+l}/{( 1 - pn)(l - pn+l)}

(B.1)

Similarly,

Ag(n + 1) XR- n( - P) 2 /{(1 - Pol+)(I - n+2

- Cpn+l{(n + 1)(1 - p- + pn+2}/

{(1 - p n+l)(l - o n+2 (B.2)

With the addition and subtraction of

2n+2/{(, n+l n+2

Equation (B.2) can be written .s

',": ~ ~Ag(n + i)-{1n~ ) Cnpn+(1 -P)

n+2 2n+2  n+l n+2)1

±Cp -CP /{lP )(l-p J

+ {-Cp4( +l - P) + CO2n42 _ 2n+3

+{(-Cpn~ nlp +2p -p 1

{(l (I - n+2 (B.3)

Multiplication of Equation (B.3) by

p(l -pn)(l- pn+2)/{p(l -pn)(1 n+2)

yields
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Ag(n + 1) ((XRnll (1 - p) 2  Cnpn(l _ p)
1+ cnl 2n+l)/{(1 n)(1 -n+l)}

+ n+l n+2)

{(l - pn1)(1 pn+2)} (B.4)

Equation (B.4) can be written as

Ag(n + 1) - Ag(n)p(l - pfn)/(j - pn+2)

- cpn+l(l1- p)/(l - pn+2) • (B.5)

For p > 0, P(I -Pn)/(l - Pn+2) > 0

and Cpn+l(l - P)/(l - pn+2) > 0. Thus, if Ag(n) < 0,

Equation (B.5) yields Ag(n + 1) < 0 and establishes

the theorem.

B.2 Proof of Property Two

v and v are continuous variables that satisfy the equalities

in the formulas that define n and no, respectively. Naor (1969"

sbciws that a< IV 1, where the brackets denote the greatest integer

in v . If Property (2) holds, that is, if vs increases as v° increases,

then no - [vo] specifies the integer that satisfies Equation (3.4) and

is thus, the balking point for the social optimum problem.

One relationship (given by Naor) that is used in the proof of

Property () is v° - 1. This relationship arises from Equation (3.5)

which is

S0 2

{V 0(1 P P~l P ))(l P -
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Substitution of v - 1 into Equation (3.5) yields v - 1. Substitution
0 s

of v < 1 yield.,, v < 1, but this leads co a trivial system sincetit 0 s

n - 0. Since trivial systems are avoided by requiring that R >C/- ,
s

the relationship is validated.

Theorem B.2: av s/3v > 0.

Proof: The proof of this theorem is divided up into

proofs for each of three cases,

1) 0<p<l,

2) p - i,

3) p>l.

Case 1. 0 < p < 1.

First, Equation (3.5) can be written as
2 v +1i

vs - r0/(1 - p) - p/(1 - P) + pv / - p) 2

Thus,
v +1

Dv /av - ii(1- P) + {l/(l - p) }(lop /v 0)
i " v +1

v~l 2i -1/(l P ) + Xnp P o /(1 - P)2 (B.6)

' >

Since v 0 1 and Znp < 0,
2L 2

3v aOvo= 1/(1 - p) + Pzp2nl/(l - p)

= Ul - P + P.9,np)/(l - p)z

SSince (1 - ) 2> 0, it must be shown that

1-P + p2 np > 0 .(B.7)
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Equation (B.7) can be written as

(p - l)/(P2 np) > 1. (B.8)

First, examine Equation (B.8) at the end points of

the region; that is, at p -0 and p -i.

lim {(p l)/(p2 9.np)} = lim{p~o 0 o•(ý P - 1)IPýlZnp,

which is indeterminate. Application of L'Hospital's

rule yields

lim (((p _ )/p2}np Im P)/P

�o ) /np) 1 (2 - p)ip

which is undefined (+-o). Also,

urn 2 Urn
p-dl {(p - l)'/(p Znp)} i {li'(2pknp + p)} 1,

with the help of L'Hospital's rule. Thus, if

2
d{(p - l)/(p 2np)}/dp < 0 for 0 < p < 1,

then, Equation (B.8) holds and the theorem is established

for Case 1. Differentiation yields

d{(p - 1)/(p 2 np)}/dp =p 2,Znp - (p - 1)(2pt,,np + p)}i/

(p 29np) 2

- {pknp(l - p) +

2 2
+ p(tnp - p + l)}/(p 2np)

Since the denominator is greater than zero, the

numerator must be shown to be less than zero.

For 0 < p < i,

! '4
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p~nP(1- P) < 0.

Also, from the series expansion of knp,

£np <p -1.

Thus,

p(knp - p + 1) < p(p - -p + 1) - 0.

This demonstrates that

d{(p - 1)/(p29np)}/dp < 0 for 0 < p < 1

and establishes the theorem for Case 1.

Case 2. pal.

Substitution of p - 1 into Equation (3.5) yields an

indeterminate form. Evaluation of the limit as p

approaches one of Equation (3.5) is somewhat complicated

by the fact that v is a function of p. However, two
0

applications of L'Hospital's rule yield

-lim Vs - (V2 + V )/2 (B.9)

Thus,

lim 3Vs/IV M v + ½ (B.10)
p*l s o o

which is greater than zero since v - 1. This

establishes the theorem for Case 2.

Case 3. p > 1.

From Equation (B.6),
V +1

3V/av° - (- + P znp)/(l -p) 2

> (I-p+ p 2np)/(l -p) 2

--- ..
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Since p > 1, Znp > (p - 1)/p. Therefore,

av > 1/( - p) + p2 _ )I{(1 - 0)2

- 11(1 - p) - p/Cl - p)

= 1. ((B.11)

This establishes the theorem for Case 3.

B.3 Proof of Property Three

Since Property (2) gives n -[v 0 and Naor (1969) gives

n.- WV, showing that v - v also implies that n - n • Theorem 3.1

states the equivalence of Yachiali's formulation of Model I to Naor's.

Since Yechiali proved that n - n, Property (3) will be shown by

starting with no - n . A more straightforward approach would be to

use Equation (3.5) and again attack the proof in three cases,

1) 0<p<l

2) p - 1

3) p>l.

The proof of Theorem B.2 can be used to show v = v for Cases two and0 s

three. For Case two, Equation (B.9) gives

lim 2>lira(v + v )/2 > (v +v )/2 - vP-*l Vs 0 0 0 0 0

>
since v - 1. For Case three, Equation (B.11) gives 3v /3v > 1. This

lim ><
result together with viV - vo from Case two proves vo - v for Case

three. Since Case one apparently does not follow so easily from

Theoren B.2, Yechiali's result is used to establish Property (3).

I

_ _ _ _ _

-. . . . ... . • • '' • • ., .• . . -•• • -• ,;T• ,- *., . : . . . .
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Theorem B.3: v = v.0 S

Proof: Theorem 3.1 establishes that n and n in Naor0 s

(1969) are the same as in Yechiali (1971). To prove the

theorem, assume v < v . Since n - [vi and n - [v],
h 0 0 o o s

n -n • This contradicts Yechiali's result and establishes
0 s

the theorem.

B.4 Demonstration of Equation (3.5)

Use of Equation (3.5) is demonstrated on the one class example

p , .,em -)f Table 3.1 with X - 1. The other parameters of the model are

R 5, c 2, 1 - 3, P = 1/3. v - RIA/C - 7.5. Substitution of this

result •"•o Equation (3.5) yields

7.5 v (Vo(2/3) - (1/3){l - (1/3) °})I(4/9)
0

or
v +1

(2/3)v + (1/3) 0 11/3

v - 5 yields 3.3347 which is too small, but v 0  6 yields 4.0005

which is too large. Since v lies between 5 and 6, n 0 5 which

agrees with Table 3.1.II
iI



APPENDIX C

INTRODUCTION TO MARKOV DECISION PROCESS

This appendix is a brief introduction to Markov and semi-Markov

decision processes including the use of the policy iteration algorithm.

The reader who desires a more thorough development is referred to

Howaz4 (1971) and Ross (1970).

C.A Murkov Decision Processes

The first process considered is a discrete time, finite horizon,

finite state space, undiscounted, Markov decision process. A Markov

process can occupy any of a number of states. In this paper, the

states usually correspond to the number of customers in the system.

Some mechanism causes the process to jump from one state to another

according to a probability distribution. The jumps or transitions are

equally spaced in time. The process is Markovian because knowing the

present state of the process is as good as knowing the entire history

of the process when trying to predict the next state. The process is

a decision process because at each transition, an administrator can

choose an action from among a set of actions. The administrator's

choice affects the probability distribution of the next transition.

Since the transitions are equally space1 in time, the process is called

a discrete time process. The process has a finite horizon because it

stops at some given point of Uime in the future. In this paper, a

bound exists for the maximum number of states required for the process;

thus, the process has P finite state space. The process is undiscounted

.4., . +4 • . 4
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because it is assumed that a dollar now is worth a dollar at any point

in the future.

Define qi to be the expecttd reward for the next transition

given that the system is in state i. vi(n) is defined to be the

expected reward of operating the system over the last n periods (jumps)

givea that the' process is in stateJ., n periods from the end. vi (n)

can be expressed recursively as:

N
vi(n) = q, + I P v (n-n.), i-l, ... , N. (C.1)

- Jii j

N is the number of states, Pij is the probability of a transition from

state i to J, q1 is the expected rei ., over the next period, and
N
Y Pii v (n - 1) is the expected reward over the last n - 1 periods.
J-1
To convert thie process to an infinite horizon process, assume that

limVn n l~inn• vi(n). n-.l (vi + ng) , (C.2)

where vi is the reward for starting in state i, and g is a single

reward per period or rrward rate for the process. Substitution of

Equation (C.2) into (C.1) yields

N.i •~vi + g "qi + [ Pi 1~ "i ., N. (CA3)

j-l

This system of N equations contains N + 1 unknowns which are g and vi,

for i i, ... , N.

The number of unknowns in Equation (C.3) needs to be reduced by

one if the system is to be solved. Let vi wi + z. Substitution into

Equation (C.3) yields

• -Awl14I
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N N
w +z+g g q, + P i w +z1 P i- 1, ..1 , N.

(C.4)

N
Since I P1 J - 1, Equation (C.4) becomes

J-1

N
w +g + q 1 + P[ wj, i - 1, ... , N. (C.5)wi-

Since Equation (C.5) is of the same form as Equation (C.3), the vi '

can be treated as relative values. This allows one of the v i's, say

vN, to be set to zero, thereby reducing the number of variables to N.

At this point, it is convenient to develop another expression

for g, the gain rate of the system. If P is the matrix of transition

prcobabilities and 0 is the vector of steady stee probabilities of

occupying the states of the system, then,

P .(C.6)

Multiplication of the ith equation of Equation (C.1) by 0 and

summation of the N equations yield

N N N N N
0 + 0 v 0- q 1 + [ P V., 0

-1 1- lj- i

(C.7)

However,

N N N N N
[ P jV, 0 " X v P0 v 0j
i j 1 jj-

utilizing Equation (C.6). Thus, Equation (C.7) becomes

N
g 1 [ 01 q (C.8)

Ju1



195

N
since 0ili

i-i

The development thus far has just considered the evaluation of

the gain rate of the process. The decisions available to the adminis-

trator have not been considered. If k - 1, ... , K indexes the

alternatives available to the administrator and if he wants to maximize

the expected reward of the finite horizon problem, Equation (C.1)

becomes

N
v (n) max {q(k) vj(n- 1)) i 1, ... , N.

i-i
(C.9)

For the infinite horizon problem, substitution of Equation (C.2) into

Equation (C.9) yields

N N

+max {qP(k) + (k) v + (n-1) 1 P (k)}vi +ng - kPJ
SiJ-1 j-lj

N
m ax {q (k) + 1 Pi (k) v + (n- l)g}k J-1 !j

This can be written asI

N
maxk {q (k) + Pi v v'L P i(1) N.kk v. J- i-,i.[

(C.1O)

v i could be dropped from the right-hand side of Equation (C.1O) since
iit is unaffected by k.
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C.2 Semi-Markov Decision Processes
1

A discrete time semi-Markov process differs from a Markov

process in that the transitions do not necessarily take place at evenly

spaced intervals of time. Let h ij(m) be the holding time probability

mass function. h (m) is the probability of holding m periods in
ij

state i given that the next transition is to state J. T -I = ij(m)

is the expected holding time in state i given that the next transition
N

is to state J. -Ti I P tiJ is the unconditional expected waiting

time in state i. J

For a finite horizon, discrete time, semi-Markov process,

Equation (C.1) becomes

n N
vi(n) q' iTi + I =IPiJ vj(n -m) hij (m), i 1 1, ... , N.

(C.ll)

As n becomes large, substitution from Equation (C.2) leads to

N

v n + qiTqi + P ({vj +(n - )gi)h(m)

N

q q TJ +~ P ij(v + ng -8 )

N
- q.T. + I P v + ng - , i 1, ... , N.

Jj-1 i

Thus, for an infinite horizon, Equation (C.ll) becomes

N
v + gT4 - qJ 1 + Pi vj , i1, ... , N. (C.12)

J-1

lAlI processes considered in the rest of this appendix will be
undiscounted and will have a finite state space.
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A continuous time semi-Markov process allows a continuous

distribution of holding times. For a finite horizon, Equation (C.1)

becomes

N
vi(t) - qi T + Pij f j(T) v (t - T)dT , i - 1, ... , N.

0 o(C.13)

Continuous variables t and T are used to index time and qi is the

expected reward per unit time in state i. Tij becomes an integral,
- N

namely, JTh j(T)dT, while Ti remains P PiJ rT " As t becomes

0
large, substitution from Equation (C.2) (with t replacing n) yields

N
v + gt q±±+ P 4(v 4 +gt-gjt)

N
" qifi+ Pi v + gt -T±, i N.

j-l g

Here, g is the gain per unit time rather than gain per period. Thus,

for an infinite horizon, Equation (C.13) becomes

N
vi + g1i - q Ti + I P, vi P i a i, ... , N, (C.14)

j-i

which is the same as Equation (C.12) except for the new definitions of

terms.

If after each transition, an administrator can choose an action

from among a set of actions indexed by k, the process becomes a

continuous time, infinite horizon, semi-Markov decision process. The

action chosen affects the transition probability mass function and the

holding tf'mi density function. If the administrator wants to maximize

g, the expected reward rate of the process, Equation (C.14) becomes

jf i
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Ng - m q1 ,k) + m/xi{ (k) I P k) v v)I
k / -1ij j i

1 19I .... N. (C.15)

Equation (C.15) suggests the following algorithm which can be shown to

converge to the optimal solution for problems like those of this paper:

Algorithm C.1 (Policy Iteration Algorithm)

Step 1: Set vi - 0 for all i. d(O) -O, where d(h)

is a vector of actions chosen for each scate

for iteration h of the algorithm. Set h - 0.

Step 2: h - h + 1. For each state i, find di(h), the

index of the action that yields

N
maxq l(k) + {l/Ti(k)} {I Pij(k)vj -v }).

kj -J-1

Step 3: If 1(h) - d(h - 1), stop.

Step 4: Solve

V.. + S7T{d1 (h)} - qi{di(h) }Ti{di(h)}

N
+ P ii{d i(h)l}vj

Jul

i - 1, ... , N,

for g and v through vl(vN - 0). Go to

Step 2.

Algorithm C.1 is the version of policy iteration used in this paper.

C.3 Example Problem

As in Section B.4, the one class example from Table 3.1 with

X - 1 is used to demonstrate Algorithm C.l. The remaining parameters
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of the model are R 5, 2, and P 3. Since n n and
0 s

S- [Ri/C] = 7, a bound on the size of the state space is seven.

The set of possible actions is indexed by k - 0 cr 1 (this indexing

scheme agrees with the body of the paper rather than with Section C.1).

k - 0 if an arrival is rejected, and k - 1 if an arrival is accepted

into the system. To avoid a trivial system, action zero cannot be

chosen when the state of the system is zero; that is, if the system

empties out, cuztmaers must be allowed back into it. n0 < 7 implies

that action one cannot be chosen when the state of the system is seven.

P(O) is the matrix of transition probabilities for alternative

k 0.

To State

0 1 2 3 4 5 6 7

P(o) = 0 . . . . . . ..- -

1 1 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0
S30 0 1 0 0 0 0 0

From
4 0 0 0 1 0 0 0 0

State
5 0 0 0 0 1 0 0 0

6 0 0 0 0 0 1 0 0

7 0 0 0 0 0 0 1 0

The dashes in a row indicate that the action cannot be selected when

the system is in the state represented by the row. For alternative

zero, the next transition is sure to be the completion of a service.

P(l) is the matrix of transition probabilities for alternative one.

. . .. . .. . I 'I i I ' i
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To State

0 1 2 3 4 5 6 7

0 0 1 0 0 0 0 0 0
P(1)

1 0.75 0 0.25 0 0 0 0 0

2 0 0.75 0 0.25 0 0 0 0

3 0 0 0.75 0 0.25 0 0 0

4 0 0 0 0.75 0 0.25 0 0 '
State 5 0 A 0 0 0.75 0 0.25 0

6 0 0 0 0 C, 0.75 0 0.25

7-

P 01(1) - 1 because the next transition is sure to be an arrival if

alternative one is chosen when the state of the system is zero. For

states other than zero, the service rate competes with the arrival rate.

Since the total rate out of a state other than zero is X + U -4 and

since p. provides 3/4 of the total rate and X provides 1/4 of the total,

the probability that the next transition is the completion of a service

is 3/4 while the probability that the next transition is an arrival is

t(k) is simply the reciprocal o't the transition rate out of

state i under action k. Thus,
AA

T(0) - -and T(1) - 1

0.33 0.25

0.33 0.25

0.33 0.25

0.33 0.25

0.33 0.25

0.33 0.25

0.33

LA
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Let b(O) be the matrix of expected rewards for the various

transitions under alternative zero. b(O) is the null matric because

no customers are allowed to join the system under action zero. b(l)

is the matrix of expected rewards for the various transitions under

alternative one.

To State

0 1 2 3 4 5 6 7

b(l) -0 0 4.33 0 0 0 0 0 0

1 0 0 3.67 0 0 0 0 0

2 0 0 0 3.00 0 0 0 0

3 0 0 0 0 2.33 0 0 0
From
State 4 0 0 0 0 0 1.67 0 0

5 0 0 0 0 0 0 1.00 0

6 0 0 0 0 0 0 0 0.33

The entries bii+l(1) are

b b,i+l (1) - R - (i + 1) Cl .ý

The componerts of the vector of expected rewards per transition,

ri(k), are

n
S

ri(k) = P (k) bi (k)

Here,

7-

- V. '.. -
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"r"(0) and r(1) - 4.333

0 0.917

0 0.750

0 0.583

0 0.417

00 0.250

0 0.083

0

The expected rewards per unit time in state i under action k are

qi(k) = (k)IT(k)

Thus,

q(0) - -ant:~ q~(l) - 4.;33

0 3.67

0 3.00

0 2.33

0 1.67

0 1.00

0 0.33

0

The information required for Algorithm C.l is now at hand.

Application of the algorithm proceeds as follows:
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Step 1: v 0  V -... v 7 -0 . d(0) O.

Step 2: h - i.

d(1) -

1

1

1

1

1

0

Step 3: Continue.

Step 4: g - 4.001.

v - 7.84
7.50
6.84

5.85

4.56

3.00
1.33

0.00

Step 2: h - 2.

d(2) - 1

1
1

1

1
0
0

0

Step 3: Continue.

--
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Step 4: g -4.003.

V 7.181

6.85

6.19

5.23

4.00

2.67

1.33

0.00

Step 2: h 3

0

optimal value of g. Section 4.6 contains another example (f policy

iteration and gives some insight into the relationship between d(l)

and the optimal policy for the individual optimum problem.

-7=,2.



APPENDIX D

USER'S GUIDE AND LISTING OF COMeUTER PRGGRAM

Several different computer programs were used in testing the

models developed in Chapters IIT through V. The program that is

presented here was used for many of the tests and was also used as a

starting point for the other programs that were developed. The program

is written in FORTRAN for the WATFIV compiler on the ]BM 370-3033

computer at The Pennsylvania State UniVw.t:uity. After the program

and its use are described, more will be said about how the program

was adapted for other uses.

D.1 Introduction to the Program_

The program is called POLI'7 to reflect the fact that it

performs policy iteration. As discussed in Appendix C, the particular

type of process this program is designed to solve is a continuous time,

infinite horizon, finite state p-ace, undiscounted, semi-Markov

decision process. This progra- is capable of solving Models I, II,

and I11. However, the optimal :iolution for Model III, the Erlang

service time model is the phase o "ium solution which cannot always

be implemented.

The program consists of two parts. The first builds the P(k)

matrices, q(k) vectors, and T(k) vectors from the input data. The

second part performs policy iteration to sulve for the optimal policy

and maximum gain rate. Other information provided for the optimal

policy is the set of vi's and the vector of steady state probabilities

of the system occupying the various states, 0.

Ai; -u
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The MAIN routine reads the input data and prints it for user

verification. MAIN also controls the flow of the program. The sub-

routines are described in the order in which they are called. See

Figure D.1 for a flow diagram of the program.

Subroutine PROB generates a transition matrix, P(k), for each

- Mpossible action k. 2 transition matrices are generated since there

are 2M possible actions. The program will handle up to five classes

(M - 5). Since transitions can only be made to the next higher or

lower state, each row of a transition matrix contains only two elements.

The first element is the probability of a transition to the next higher

state while the second is the probability of a transition to the next

lower state. Subroutine PROBI is used by PROB to fill in the

transition matrices.

Subroutine PROFIT generates the matrices of expected rewards of

a transition, b(k), for each possible action k. Since only transitions

to the next higher state can yield a nonzero expected reward, each row

of the b(k) matrices contains only one element. Thus, the b(k)

matrices are dimensioned and used as vectors.

Subroutine EXPECT first generates the vectors of expected

rewards per transition, r(k), from
n*

s

ri(k) = P (k) b (k)
j=0oi ii

EXPECT then calculates the vectors of unconditional expected waiting

times, T(k). Also, using

q - ri(k)/Ti(k)

EXPECT computes the vectors of expected rewards per unit time, q(k).

,d
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start

Input of
Para~meters MAIN

PROB PROBi

PROFIT

ActionsEXPECT

Output of
Results POUIT STMQ

Stop

Figure D.1 Flow Diagram of POLIT

........................................
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EXPECT prints the code which relates the number of an action to the

classes that action admits. If the input parameter IFLAG is set to

one, EXPECT prints the condensed matrices P(k) and b(k) along with the

vectors r(k) and q(k).

Subroutine POLIT implements the policy iteration algorithm. It

utilizes subroutine SIMQ from IBM (1970) to solve the system of linear

equations generated by Step (4) of the algorithm. POLIT outputs g, d,

and v for each iteration and prints the vector of steady state proba-

bilities, 0, for the last iteration (which yields the optimal policy).

In addition, POLIT prints the vector of optimal expected rewards per

unit time. Finally, POLIT uses

n*
Pi 0P* P*

i-o

where P* represents the optimal policy, to again compute g. The

comparison of the two .,ra3tues of g should give the user a feel for the

roundoff error that exists in the solution of his problem.

D.2 Use of the Program

The program input is defcribed first and then illustrated for

the example described in Appendix C. Output for this problem is given

with the listing of the program.

Card one of the input gives the number of classes of customers

in the problem, the number of phases of service (Erlang number, h),

and mean service rate for each phase of service. The user is reminded

that if the overall service rate is •j, then the service rate for each

phase of service is h•i. The format of this information is 215, F10.2.

If the user wants to see the P(k) and b(k) matrices and the r(k) and

II4
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q(k) vectors that are generated, he should also include a 1 in column

25 of this card.

Card two of the input gives the reward for service for each

class of customer. The reward for class one comes first followed by

the reward for class two and so on. The format for the rewards is

8F10.2.

Card three of the input lists the cost per unit time in the

system for each class of customer. Again, the costs are input in class

order. The fomat for the costs is also 8F10.2.

Card four of the input contains the self-optimum balking points,

u ,for each class m. These are computed from
m

t " [Rmu/C- m + (h - 1)/2h]

The self-optimum balking points are input in class order using a format

of 1615. The 'lasses must be numbered so that the class with the

largest n5  is class one.
m

Card five contains the arrival rate of each class of customers.

The arrival rates are input in class order with format 8F10.2.

The input for the one class example of Appendix C follows:

Card One

Column 5 10 11-20 25

Input 1 1 3.0 1

Card Two

Column 1-10

Input 5.0

)
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Card Three

Column 1-10

Input 2.0

Card Four

Column 5

Input 7

Card Five

Column 1-10

Input 1.0

The output for this example is given with the listing of the program.

Since each section of output includes descriptive information, the

output will not be described here.

D.3 Other Programs

The arrays of POLIT had to be enlarged to run the Erlang service

time model for the airport example in Chapter VI. The number of states

required for the Erlang 8 model is 145, so the dimensions representing

the number of states (50 in the listing) must be at least 145. Also,

since the optimal policy for the Erlang model was not implementable,

POLIT was modified to check policies that could be implemented that

were near the phase optimum policy. The modifications were to provide

for the input of the policies to be tested and to alter subroutine POLIT

so that only the policy evaluation portion of Algorithm C.1, the

determination of g and v, was performed for each input policy.

Two programs that are on the IBM 370-3033 system at The

Pennsylvania State University were also used. LPFREE [see Ilgen (1978)]

was used to test the linear programming formulation of Models I and I1.
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MPSX [see IBM (1972)] was used to test the mixed integer programming

formulation of Model III.

D.4 Listing and Output

A listing of POLIT and output for the example follow.

-V,4

'I I .

•... .:.. :,..,. .. ...... ,•,• .. ,,: .,..•,,.. •':..•,• ,.:•.• ,]• "-•-.j, [t.•. • ,• • • . • , ,. . ,, ,...,• .,• ,,
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RASI-II6**. ........START JOB 1501 .... K32896L46 .......Ertl R
as!"I**........ STIRT JOB 1501 .... X3289646 ...... RUE 9 ..
R1S5-Tr*~**......... STIP? JOB 150 1. .K3289644;. ... .. RU? ?

. ... ..START J30! l5OI...932896S46 . 0 . U
RASP- 17**a......... STA17T JOB 1I011.... K3289646....o.PUMI P...

*5: 01 OLT!: 06/12/79 a h 3 p S Y 5 T E I L 0 G

JOB "73764i,T00O21,R=05O0C,Sm280, 1,0'?'U! R
TA?, AINuT3T,?O8,vSa16 000000125

S'¶'P VAS ?XECU'"D - CnYD CjDz 0000
!P /Sr.TTA? / ThRT 79163.1115
nP /SZTTIF /STOP 79163ollI5 CPU OMIN QO.03SZC !!AIN BE LCS OK
CG 00000050

~XH03DAL 100011950
STEP WAS E%!C'17V2r - COND CODE 0000
!P /DATX / STAT! 79163.1115
!? /DATA. / .SrvP T9163.1115 CPU 0MTN 00.ý2SZC IIIN 2POK LCS OF
05 /W3289646/ STIP? 79163.1115
09 /K3289646/ STorF 10163.1115 CPU 0I¶IN OO.55s!C

.iTZ7 *** 19-3 (05/26/7q--1049)

C MAIN POGRAMI

C CLASS ONT SHOU~tD I HAV LAR'?.ST RTWARD/COST, CLASS 2 'NE!? LAP(1RT
C AIND s0 CN.
C I)SINZ104TCH
C I?tAG 17.3E. T1, SHORT 0/T'; 17 1, 0/P I3iCrT7DS P,B,R,C MATPICTS
C tCtASS % UNDER OF CtASSES OF CUSTOFES
C H!EaAPD(L) - CLASS PE7&?OS FOP SERVICE
C CC15 CL) - CLASS TIME CO~ST
C IL'()- FORCED CLASS BILKING POhINTS -CUSTOM!rES Il SYSTEM
C AS OT 11JAWI79 ON1Y 4LIM(1) IS YS!_D
C tl tAN SERVICE RA!1
C KPRASE - NOI¶BER C? ;EASES OF SERVICE

C FL&MCA(L - CLASS AIRRI7AL ?AT!S GTV?.W STATE < tITI(L)
C Z S71"! 0? SYSTtM - NUMBSER OF PHAS!S OF SERVIC! INI THE SYST'E4
C J 1 IF STAT~ !7.CO(MIS I * FPHASE ATTF TPANS, 2 IF 1-1
C P(L,I-,J) - CO'fDENSED TRANSITT03 M¶ATRICES
C ? (t,rT) -!XPECTEZ PvO?IT OCCrTP&flC!
C Q(L,.I) E XPEC'T'r ;FF01? UNIT? TINE
c T (L, 1) - PwC~r WAI¶TTnG TIN? 13 STATE

V(I) - ?vtATIVE VILTIE OF STARTING IN ~',*;Tl I
C G - GAIN HiLTT - !!P!CTED PPOFI? / TZIME
C ID (ZI - PCL:-CY CHOSIN TEIS ITIR&TION
C S(L, I) - VECTORS 0F rXPErCTED PROrIT OF TPANS FROM I - I+KPHAST

1O 201!O LCL ASS, RZ2AF 0( 50) , C OST( SO), H!LZ( 50), 1, FPS A5 ,
1 FA~O( 5),P 2, 0, 2) , R( 3 2, 50) Q 32, 50), T( 32, 5)

2 ( 5 0) r, 0 5 0), e 3 2, 5 0), N ST ATS

C RE!AD INUT"

2~ a~asaaaaaaassase.saaaa~~amaa~ *a...

2 1:? a 5
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3 ZOnT 6
44 RZAD (!J, 100) LCLASS, KP1!ASX, Up I~tAG
5 100 FOq!IA-f (2r5, 710.2, IS)
6 BRAD CZN,200) (RZI&RD(l), L a 1, LCLLSSj
7 200 ?')RUNAT (8110.2)
8 B1~kD (I13, 200) (COST CL) , L 1 1, LCLASS)
Q P-hrfI3, 300) (OLZ!(L), L u1, LCLASS)
10 300 FORMAT (1615)
11 RZAD (1-1, 200) (?LANC& (T.) L 0 1, LCtLASS)

C !CROCW!CF of INPUT

12 W'VTZ(!0OUT 4400)
13 4400 FOIMATfiRl)
14 UIJEIZ(OU?, 500) LOIASS, KIRAS!, a
is 500 FPO1!AT(IHO, 110X, 'TH!U QUZ171 CONT1OL PVCULtfl HALSt,Z. I CLASSES 01

1, IF CUSTOERRS. TR! ilEAN 3INVIC! RATE OF'//20X,t TN! ERLL'IG1,15,
2 1 S!N7!R IS 1, 710.2)

16 URITE(I0UT, 600)
17 600 rOPMAT(IRO, 101, '!TWPOT VALUES OF TNZ PIAMINTZ35 FOB EACH CLASS',

1 I ARE GIVEN 13I THE 7CttClZNG TABLE')
18 SIRIT!(ZTf3T, '00)
19 700 I0RIIAT(140, 101, 'CtLASSI, 10X, 'BEVIPO', 151, COST#, 16X,

1 'I1LIZ4,, 1!RX, OPLAMNl)
20 Do 5010 L is 1, LCtlS3

21 5010 'JRZTI(X0'7-, 809) L, P.TVAPD(L) , COST (L) ,XIMZ(t1 *FtAMD& (t)

22 800 F0RMATC110, ftX,15, 92, 710.2, 10X, F10.2, 12X, 15, 13X, 710.2)
23 ?NSTAT? + < PN&S! * 4=1ZN(1)

C GlvFlE~TZ T3kXStrTO't ltATtIZClSf

C C'ZFI.Tl7 EIPICTED PP0?!? OF NrXT TRANSITION 101TRICES

ISCALL P0'
26 ZFZLG~.)GO TC 5r.4-7

27 LCLP1 u 2 ** LCMASS
28 Do 5045 L a 1, LCt.Pl

29 WflITE (1011T, 2100) 1.
30 2 10 0 1?0BfT (140, '70X, 'P ANt 9 IA~TrICES FOLLOf FOP ACTTON1,15)
31 ;ITZ (!T7¶.T 2200)
32 22COnR 7BAT (I HO, 31X, 'TELZIStTIC3 PO2ABZlZTI!S') .
33 01) 5930 1 a 1, ITSATI!
344 5030 ~TR1?~ (0 UT , 2300) (V (t.1.J) , J *2
35 2.1110?0OP. MAT (8 10. 5)I
3s VB! T 9 (LOUT, 2300)
37 24 00 FM R'NAT IIHO , 3 1 X, I'ElP TC'!D P?7A FDS 5 ?0 T? &:IS:I0?? '1)

3Q 'AR Z".(!01? , 2 30 0) (1 fL, 11 , 7i I * , IISTAT)
39 504i5 CO0!TT.1 7

C GZ!I"AT'T !XP!C'!D PIRO PT/OCC!.7P RUC Y AND YXP-CTED ?.FJAPD/T!M

440 50447 CATL ixP!CT
441 IF(I7'~AG.NE.1) lo a0 5060

C OUTPUT q AnD Q

10 SC50 T, v I1, LCL.Pl

L44 2500 TOIMA'T(1PO, 23'(, #R AND VECTORS 7'CtL0W FOR ACT.04f', 15)
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'46 2600 ?nRIA?(IR0, 301, OR(1) 0)
47 WRITE (100?, 2 ?00) (1 (r. , ), I W S7ATI)

'48 2710 V) RN AT(8 F1 0 7
'49 VRITE (ZOOT, 13CO0)

51 UPITTiI0OU, 2700) 1tL,) a 1, 33TITT!)
52 5050 COIZNU!

C Pw5I?03! Pr2LZCT ZT!SATI'ZW

53 5060 CILi POLI?
su STO P

56 S!13300?hN! PROD
57 COMMON LCLASS, R!JkIRD( 50), COST( 50) , SIMZ( 50) , U, KrRASZ,

1 FLA.%DA( 50), P( 32, 50, 2) , R ( 3 2, 50).O 3 2, 5 0) ,T 3 2, 50) ,

2 7( SO), G, ID( 50), 9( 32. 50), YSTATE

C 2 #* LCLASS TVAVSSXZC IIATPICES WILL 32 GKENEATED

C 1ST - tCt.ASS CUASSES TIKI! 0 AT A TIME!
C 230 - LCLASS CLASSES TAKEN I AT A TIMIE
C
C
C iAST - LCLASS CLASSES TAKEN LCLASS AT A TIME

MOT- SC AR 5 IS 'IPPER L131T ON LCLASS

58 L~P a 2 0* LCLASS
59 D; 10 L - 1, LCLPI
60 00 10 1 a 1, ISTIT?

62 10 P(L,I,J) - .3

C GENERITZ ?3AlISITION 'IARI7 FOR LCLASS CLASSES TAKEN 0 IT A TrMF

63 Do~ 20 1 2, ISTAr!

65 20 P(1,Z,J) a1.1

C GENERA?! 73ANSITIOlI 3ATRICIS fOR LCLISS CLASSES TAKEN I

C ATAId
66 LL a I

6.00D 100 L a ,LCLASS
68 "TLIND a FLANDA (L)

LL a LL + 1
70 1-1- C .Li PROO1l(Ul"TLA'IDA)

c GlIEREAT! "315SIT10! MATPIC!? TOW LCLISS CLASSES TAFE! 2
C AT ITIM!

,1 Ie(LCLASS.LT.-2) ItO 'n ¶f000
72 ~LZLLM x LCT.A53 - 1

73 )') 20"1 L a 1, LCLII

7 15 D 200 Ll L~l, LCtASS

77 TLIMDA - FLAMOA (1) 4 FLtA,'DA (L 1)
re CALL P1081 (Li, TtI~NA)
79 201 Cn4TI.1f73

C GEN13A?! 7A151-1=1 1ATFICES FOR tCtASS CLASSES TAIKE4 3
C ATA 711!

c...~aaaa~aaaaa***u..a..aa ~ ., aa~iasa aaa*aasa*.a**a**
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80 Z?(LCLASS.LT.3) GO0 T0 10,00
a1 LCL3'2 a LCLASS 2
82 DO 300 r. It1 LCL32
93 L21 aL I
84 30 300 Ll L21, LCtM1

86 DO 300 1.2 LIPI, LCLISS
S7 tL a LL *1

99 TLINDA a LAISDA (L) + TLI3DA (L 1) * ?A1MOA (t2)
89 CALL P1081(tL, TtAfftA)

90 300 CINTMAU

C GENERAT TUlNSZTION MIARZCF4 FOP LCLASS CLASSES TAKENI 44

91 1?(LCLASS.LT.44) GO TO 1000
92 LCL.33 a LCLASS - 3
03 DO 400 L a , LCLA3
944 LPI w L + 1
95 n0 4400 Li LPI, LCL.M2
96 LIPI a Li 1
97 00 400 L2 -LIPI, LCtM1
94 U2PI vL2 I
99 00 400 L.3 UPI22, LCLASS

100 LL w LL I
101 mLAMDA *FLAMDA('.) + YLA3D&CLl) + FLMICA(L2) + ?LAIIDA(L3)
102 CALL P9031 (tL, TLAACA)
103 L&00 coun~N'J

C Q--NE1AT2 'PRAZSI'?ZCI 4ATRCES FOR LCLASS CLASSES TAKEN 5
C AT A 1TIME. NOTE FOR TRTS PROGF&M, MAX VALUZ 0F LCLISS 13 5.

104 rM1CLASS.LT.5) GO 70 1000
105 TLAMCA w 0.0
106 00 500 L. a 1, 5
107 5CI TtANDA a TLAMID7 + ?LAdrl(L)
108 LL a LL + I
109 CALL !'9011 (LL, TLAN.0A)
110 10(2? a 6
i1l TCLCLASS.GT.3) 'JRITE(I00T, 2000)
112 2000 FnR?!~A¶(lHo, 20X. f-ROILE.4 HAS 10~!T THAII 5 CLASSES. ONLY CLENSSES',

1 I TO 5 ;ILL BE MD~f.')
113 1000 5!?'3N
1144Ef

115 SIMICTINI! PqROB (LI, TLA3DA)

116 COM-103 LCtASS, RIVARD( 50), COST ( 50) , NLIM ( 50) , 0, 1CPHASE,
I ?LAMOA &5 0) , P ( 32, 5 0, 2) , R( 3 2, 50), #Q( 32, 5 0), 7 32, 150),

2 V ( 50. 0, G ,OCr 50) , 2 ( 32, 5 0),V STA`S

C PROS1 FILLS IN 9 AATPIX FOR SflERC"TI!NE PP08

*117 4SN1, 1STNTE I
118 TOMA TLA~rVA *

it ~ M aO TL121DA / TOTAL
120 PIOOW? w I / TOTAL
121 P(LL, 1, 1) 0 1.01
122 DO 40O 1 2. Is~l1
123 M(L, r. 1) a *
1244 140 P(LL, 1, 2) u * O1
125 RTT'
126 N
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127 SUBRO 7TIlit PROFIT
128 CONSON LCLASS, RZWABO( 50) , COST( 50), 1IZB( 50), 0. KPRAS'ý,

I ?L ASCA( 50) , P ( 32, 50, 2) , R ( 32, 50) Q( 32; '50). T( 3 2, 50),
2 V( 50), G, ID(50) , 3( 32, 50) , ?ISATE

C 2 ** LCLASS EXP!C!ZD PROFIT OF TNT! N"~T TRANSITIONI MATRICES
C VILL 32 G!2I!RA?!t.
C IST t CLASS CtISSPS TAKEN 0 AT A T13!
C 23D -LCtASS CLASSES TAKEN 1 AT A TIM!
C
C
C LAST - LCLISS CLAfSZS TAKENt LCL ASS A? A TIME!

129 19SM1 w 3STAI! - KPH&SZ
130 tCLPl u 2 ** LCLA!S
131 Do 10 L a 1, LCLP1
132 DO 10 1 a 1, JSTATZ
133 10 is(L' 1) - 0. 0

C FOE LCIASS CLASSES TAKEN 0 A! A TIME, 3 0.
C
C GENSIAT?! P!!OFIT MATR.IX FOE LCLASS CLASSES TlXrV 1 A? A TIME-

134 LL - 1
135 01 100 L a 1, LCLASS
136 Ui a LL + I
137 VRA?! a ?LAMCA(L)
138 00 50l I a 1, "Is¶1l
139 J I K PH151
1140 ?J aJ- 1
1141 S171 a ?LA.404(t.) *('134AR~IIL) ?J T3 COST (t) /U)

142 50 3(LL, 11 at1 33 ¶AT!
1143 ¶o0 CO!TIII!

C GENIRA'!r PROFIw MAT11ICS TOP LCLASS CLAssts VAT!? 2 A- A TIIE

1414 r7(LCLASS.LT.2) GO TO 1000
1145 LCLl1 = LCT.AS3 - II
114A 00 200 L -1, LCL?!l
1% 7 'ýla L

148 10 201 LI - L?I, LCLASS
I1a4a LL a LL + 1
1150 77.%Vý Y LINVI(L) +FLAMUC(L1)
151 DO 150 1 -6 1, li!i1
152 3 = I * PHASI
153 ?.7 j - 1

154 Fr1 FLT0.A(lt() * (427hRO(L1) -?J COST (L) / l +)
I51 * .?fT.A(L!I1 (L) * R (I) -?J CO 05T CL) / Ii)

155 I5 S 5 (tL* ',) u ~ TAlr
156 2ý0 CO!:TIu11!

C GZN'!RA?! mqOFIr 'lt?!7 !tnP LCTRFS C.ASSrS TAY!?! 3 All At '?!M*

15' IF(LCLASS.LT.3) In TO 1010
ISO tCL?!2 a LCLAS3 - 2
159 00 300 t 1. LCL'42
160 L~l a L +
161 DO 300 Ll L2t1, ;Ctm1
162 L121 0 Li 1
1631 DO 100 L2 *tiPl, LCLASS
1614 LL -LL +

165'"'ATE *FLA?!CA (L) 4Ft.0DA (L) + ?LAMtA (12)
166 Don 250 * . sN'
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167 J I X 4 K!ASI!
168 FJ j I
169 SflIM FtAlfZttAC) *(RIKABO CL) - P3 COST (L) / U)

1 + YLVICA (t1) * (RZIAR D(L 1) -J 13 COST (t1) /U)
2 4- 7LASDA(t2) * (RIVAPD(L2) -. J * COST(L2) / )

170 250 BCLL, 11 = SON /TR&?!
171 300 COIITIN'??

C GENERATE PlOTZ? H&?RIC7S FOR LCLASS CLASSSS TAXIN '4 AT A TIME!

172 1? (LC-LASS. LT. ) GO TO 10 00
173 LCT.83 a LCUSS - 3
1114 DO '400 L a 1, LCIN3
175 t' - L *
176 Do '40C Li LP1* LCtS2
177 Tlip a V,1 I
178 Do '400 L2 a j¶4I1 LCLZ¶1
17q L2Pl a L2 4.I

190Do ROO L3 U LPI, LCLASS
181 LL a LtL 1
182 TR&T2 ptFLmci(t) + rtuD(L1) + FiJiCL(L2) F LAflDA(t3)
183 00 350 1 w 1, HSai
1814 J I K PHASI
1q5 ri 3
186 SIUM aFt&NDA CL) *(PIUVAD0 L) - FJ * COST (L) / U

1 4, PLAMCA(LI) * CRIVARD(L1) - r3 * COST(tl) /U)
2 + FLlMDk(L27 0 CBEI'ARD(L2) - 13 * COST(L2) / 0)
3 + ?Lm~DA (L) 4 (REZUED(L3) - ?J * COST CLU) 1 U)

187 350 BCLL, T) a SIM5 Tl2ATl
1oo '400 CONTINUIE

C GENZEATZ PROFIT MXTRtX ?nP 5 CLASSES TAKEN 5 AT A TIM!
C tITI TIPPER WIrND Olq tCtlSS IS 5.

1S9 I?(LCLASS.LT.3) 00 TO 1000
190 Lta tt 1
191 TUT a 0.0
192 n0 L430 L. = It 5
193 '430 "IMAT a TPATZ + FLANCA L)
19a4 on 500 r a 1, ~3S1

195 J I + 4 P1IA53

198 00 450 L 1, 5
199 (450 SUn w 5t1m 4 LA~lrl(t) * CEEARDCL) -FJ *COSTCL) /U)
200 500 BCLL, 1) *StYIM / TrAT!
201 1000 P!TN *1

202 V

203 S.755','?TI! '!PECT
203 COMMON LC! ISS, R!¶TSDC( 50) , COST( 50) , NLIM( 5a) , U, KPRAS!.

I IL AMC 1 50) , P 3 2. 5, 2), P( 32. 50), *Q( 32, !0) , T( 32, 50),
2 T( 50) G, tOC 9 11, 8 32, 50(), NST ATE

205 LCLPI u2 *aLCLASS
2i6 W¶1a JPT!-VHAS7
2 07 D0 10 L - 1 LCtr1
208 Or) 10 a 1, IS!7AT!

211 10 L.,I a1 0.01

0 0
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212 00 50 L *2, LCUPI
213 On 4~0 I*u 1, ISM1
21L4 4 0 R (L, 1) a P (Lt I,1) 3 (t, 1)
215 511 CONITNU0

C GE1!!RLTS FOR LCLASS CLASSES TAKEN~ 0 AT A TTME

216 TOU 6
217 L'- a

219 VRlTL!(TOrV!,20)0) tl, L
220 2000 ?AnIT(1H0,20.(,IACTZC~',,'ý5, ADMITS C-LISSES', 515)
221 00 60 1 2, XISTATM
222 60 T(LL, 1) a1/U

C GENVEAT2 ?OR LCLASS CLASSES T'AKIN I AT A T1101

223 00 100 L a 1, LCLASS
22'4 Lt =LL* +
225 T~t&T! a LAL1D&(L
226 WRITE(IOrIT, 2100) Lt, T.
227 TCLL,, 1) a I/TRATZ
228 *UT m TAT? * U
229 DO 70 1 *2, NISM1
230 70 T~(LLt T) *1/tRATE
231 100 C0HTMITZV IEP

C GENERATE? ?0?O LCLASS CLASStS TWINS 2 AT A TIMF

232 1?(LCLASS.LTI) cia TO 1000
23.1 LCLNI1 LCLASS - 1
23LA 00 200 L u I, LC1L111
235 t a + 1
236 DO 200 Li a L21, LCtASS
237 Lt =LL +
238 TIATE = ?LAfl0A(L) + ?LANO&h(Ll)
239 2RT(TO0IT, 2300) LL, L, Li
2140 TtLL, 1) w 1/ TRATE
241 ?R&lT a TRATI 4-
2L&2 Do 110 Z 2, mfsTm
2L43 170 T(LL,I) a1/ ZRATT
2~44 200 CDiTtmul

C GF3ZUTl FnR! LCLAS!? CtASSL!S 'ANZN 3 AT A TIM1E

245 IP(LCLASS.LT!.3) Go To 1000
24&6 LCL62 *LCLASS - 2
2L47 Do 300 L. - 1, LCLM2
2'48 LPI + I J
249 00 300 Li w t.Pl, LCLll
250 tliPl v Li + I
251 DO 300 L2 - LIP 1, LCtASS
252 Li*aLL *I
253 T?!Ea FLALICA(L) +. ?LAZ¶DA(Ll) *?7LA~¶CLL2)

42SL& WRT(101J?, 2J000) Lx., t, tl, L2
255 T (Lt, 1) = I/ TP.AT!
256 TEAT% a TEATS +.
257 10 270 1 a 2, Hs*,l
259 210 T(LL, 1) a I/ TOIATI!
25' 300 Cr TT~qll

C GZ111HILT9 - 90? LCLASS CLASS'e!S TAT!?? ' AT A TIEF

260 1(LCtX5S.LT.4) ln--r) 1000
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261 =LC33* LC~LASS -3

262 D8 400QL I, LCV1~3
263 LP1-aL I
264 00 400 Ll - Pl, LCL%12
265 LilP a Li I
266 DO 400 L2 a PI LCL.M1
267 L2plIsL2 + I
26q flO 400 L3 - L2Pl. LCLA5S

769 LL aLL 4I
270 ?TA'T! a FLANDA(L) 4. Ft?tAA(Ll) P tAimDA(t2) 4 LAIIDA(L3)

VIR VIT! (jOr(T, 2000) LL, L, Ll, L2, L3
272 T(LL,11 a 1/TRAIT
273 TRIT! a T1Pk! + U

274 DO 370 1 s 2, iSail
275 370 T(LL, 1) a I/ TflATZ
276 400 CO'ITTIPT3

c GENIMATZ T FOR 5 CUASSES TAr7!,21 5 AT A T~r!
C NOTT! LCLASS IS SC0U1DED BY 5

277 r?(LCLASS.LT.5) 1,O TO 1000
278 LL aLL4 +¶
279 TRATE a 0.0
290 00 430 L a 1, 5
281 430 TRT a TPAT! + ?LAMDA(L.)

292 WRIT'1(ICU-, 2000) LL, (1, L 1,5)
p.83 T(LL, 1) -1/ TUAT!
284 TRT IULT! + I~

295 Do 470 T. m 2, MiS.11
2a6 470 T(LL, I) u l/ TPATI
287 100n COUTZ1U!1

c G23TRATI 2 FOR AUL r-OtIC7TS

298 10 1090 1 a 2, NTSTATZ
289 1090 a (I I) a '(I I) / T (1 1)
290 DO 1200 L a 2, LCL21
191 nlo 1100 1 a 1, NS.41
292 1100 q (L',I a !,(t, ) / T(L,' )
293 1200 CONTrNUL
294
295 S~rD

296 Su7-13P¶ITINEO
20? C11MON LCIASS, 5~AD 0) , COST (90) , 44LIM ( 50) , 0, K(P~iASS,

1 FLAMDA ( 50) , 2 (32, 50, R'* ( 3 2, 50) , 0 ( 3 2, 50) , 7 ( 3 2, 0)
A2 (5 0) , r., 70( 5 0) , P (3 2 ,50), I ST % !

C USE POLICY IO 1TO !TIII OPTTM1AL POLZCY - T!NDISCO??T!",
C '61?"INT- 4iOR!C'ý.
C AA 'IM. COt4TAtV C09? ICI!N"S Q? SYTSTM OF LINU1IP EO1IATTI-S I I
c ~ 1 V V('STiT~a- 1) , G. ';OTE V(S& 0. ) 13UT TULLCI1 .
c G FOP.8 lZIIE
c BR WILL. BE RH OF SYST!!¶.

29q VI~iSIO!I &A (2501)) , BE (101 ,TDOLD 50)

c DIMEISION 0'P AA XW 3 5B vT FS !XNC~rtY IT MY Nf AND N ?OR VINO
c TIRESE AP! AUTOIATICALLY TAKMN CA32 OF BELCW

290 :'S s(3
inn 0 10 1 a 1, STATT.
301 7(:) a 0.0
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312 10 IDOLO.)(1) 0
103LCLPI 2 ** LCLASS

301% NS.11 ',4STATE - 1
3 0 :O0UT -6
30i 15 1T~v. ITR 1
10-1 Do 1000 Z I NisTxr~
.308 ?!IAX s 0. 0
309 LCHO1C a0
310 Do 100 L a1, LCLP1
311 Iml I I
312 1:11 m I + rPHiAsl

31L4 I?(Z.GT.(RSTATZ-KPWASl)) GO TO 1
315 ?IN l)SUN P(t,I.1) *V(TPI) + P(L.1,2) *V(1?11)

C1 1 IFT I.ZQ.0.0)GoT10

c otTAS MAICLASS' S POSILEI A TIE

3240 lV(T0TAL.GZ.YLX) GO To 60
321 GO TO 100
322 60 ?MAX a T1A
323 LCHOIC w L
324& 100 C0NTINUt
325 T7(iCHOIC.H?.3) Go To 110
326 WRITI(IC'UT, 2000)
327 201)0 FOflrAT(lR0,2(ý't* ILCHOIC a 0')
329 STOP
329 110 ID(T) m LCH0Z.'

c SiT U? 1%1 Alit Bs

33M~ DO 120 J ',S *
331 TX (J-1) * USIT
332 AN (IJ) a 0.0
333 1 ?(J. EQ. (I -1) ) AA (XX) a -P(LCHOIC, 1, 2)

135 I:X aI + (I-i 4TATE

3.16 AA(IXZ) a1.0
337 Lxa = (14STAT2 1) * ISTATE
338 Al (1111) x T(LC~iOTC,Ii)
330 BU(T) - 3(LCHOTC, 1)

3L40 1000 CONTINUEI
341l CILL SM1(&Al,flSTAT,KS)
14&2 Tr(KS.E.Q.0) GO T0 2.00
,IU 2 10 0 FllRMAT (1 H0, t X, ISUZGULAO 1'
34&5 STOP
146 200 '.ITr(IOUT, 2200) IE17

L7 220C -0 q1A ( I HO, 23%, '?7STlt-. YCTR ZTV'AT7ZI ', 5, Fr~tL0O'')
3tP '4='77(IOU7r, 2300) I

3U9 23 r)R Ao~T (110 , 7)%, In-CISTCN. 117CTOP')
£350 '4F.l-z(IOtO7, 24i~0) (ID(11 * I =1, TIS'A'I.)

351 2400 ?Ortl.AT(16I5)

352 li0 1100~ 1 - 1, %IST&T-

3514 'l 7CSTATI)

Is f wlI T .: llu7, 2500) G
157 2100 FOR -4 T'I % r), 2)X, ": ,F10.3)4

35A I~(0?7 5015 C 2ý0 FOMA' H-. , M IV-ECT-41
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361 27-10 FonIAT (8!1~. 4)
362 Do 1200 1 a 1, N(STATZ
363 120C 17 (It (1) S. IDOLD (1)) GO TO 1500
364 GO To 1700

166 DO 1600 1 1 1, NSTj¶7
367 1600 r-lOLD(l) =10(l)
168 lo?015
369 1-700 7FT(OIT. 2300)
370 2900 FORMAT(1H0. 23X, 'POLICY TItF.ATTC4( TZPAM1NATED')

C COMP7TE! STEADY STAT? PTIOB&LR!LrIZS

371 00 3200 I 1, 11STI2
372 LCROIC a TD (I)
373 00 3120 J - 1, WS.91
374 !TC3 a (1-1) *4ISTATT J
175 A.A(IXJ) = 0.0
376 1 (J. EQ. (I-1) ) A& (IXJ) - P(LCFIOIC, 1, 2)
3-77 312C r(J.?Q. (Z4FKP~S?)) AA (1X3) -P(LCECZC, T, 1)
379 1'(1 a I + (1-1) * NTT
379 Ax (111) aAA(LXI) - 1.0
380 1XN a I *NS!TIT

3P,ý Bll () - 0.0
Ai3 3200 COUTINUE
384 BB(ISSTAn. a1.
385 CALL SINQ(AA.3,BBZSTlT!1KS)
386 I~p(KS.:-Q.0) GO To 33CO
3a7 WPtTZ (Itom,21.0)
388 STOP
399 3100 TOLY a 0.0
390 00 33M0 I - 1, NSTITr
391 L.CHOIC a 10 (T)

393 33(l) a 39(l) * I (LCHOIC.I)
31;41 3340 TDTV - XDIV + R I~(1)

396 00 3360 T = 1, ISATh!
397 spt(I) v 313,1) / *(YlZv
39F 3360 l(7t a IN1T + 83(I) * 7 (1)
399 URTZfIOUT, 3400)I
"400 3400 FORMAI(lH0, 2CX, 9STRAD'1 STAT! POEABTLITI!TS')
4j31 W~llT?(0.U!,2'700) (BB(I), I - 1, NISTA-!!)
402 WR!Z UOU-,36)0)
403 36-10 Q0ACRCPIt VALUES')
404 qrr '(ioo'r,27-30) (vT(I), I a 1, nsTATE)
~405 7 -E(OT,70
406 37MC, FORMAT f 1 2CC,' GAIN1 ?ITZ CH1!CR')
'407 q7?Tr (Iou". 2'"10) X1MULT

409 8?

C PURFOS?
C OBTAINt SOLITI0O1 0? A 3Y OF STIUL NOUS LINEAF EQ1T0'S,
C

C CAT.!. FT.Q (A., a',N,i)
C "6'c?!iC-T OF? r¶~
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C A - NA?!U OF COil?. STORED CCLVIINUIS!. THESE ARE
C DESTI.OYTD 13 CONV'vrATION. SIZIE Of A %IUS? BE EXACTLY N RY I
c 2- VICTOR Of ORIGINAL EUS TALUES. THESE APE REPLACED BY SOLN.
C L!NQW! 01 3 IqST IS !!ACT.LY N.
C N -NUMBER OF IQUITIONS AND VARIABLES. N.GT.OW!.
C FS -OUTV"? DIGIT
C 0 ?OR NORMAL SCL9TTC3
C 1 ?OR SINGILAP SET OF ZQUATIONS
C N1ETMOD
C 3THOD 07 SOLUTION IS BY ELIMINATION USING LARGEST PIVMT&L
C DIVISOR. EACR STAGZ OF ILIMINATICS CONSISTS OF INTERCHANGIN1G
C POWS WHIN %ZC!SSABY TO AVOID DIVISION BY ZERO OR SEILL
C ELENENTS.
C T4Z FOPWARD StlUTICN TO 081"illS VARIABLE 3 15 DCU(E IN~
C I STAGES. THE BACE SoLWT3TCN FOR 7142 OTHER VARIABLES IS
C CALCNTLATIE BY S"TCC!SSIVZ SnSSITaTIOVS. FINAL SOLnTION
C VALUES ABE DEVELOPED 19 VECTOR 3, VITH VARIABLE 1 IN( 30), S TC.
C IF NO P~IVOT CIS It PCIND EXCEEDINIG A TOLZRANCE OF 0.0,
C THI! SATI51( IS CONSIDERED SINGULAR AND KS IS SET TO 1. "'HIS
C TOL!RANCl C14 ZE MCODIFIED BY RPLACING TRY FIRST STATEMENT.

C

C FOR'T1RD SOLUTION

'413 KI 0

'4115 no 65 1 m ,U

ul33 uy 33 * + I

'418 DIGA a 0

"421 DO 3ý I J, I~~

C SEIEFCH FOfl 1AXISUM COEFFICIE'NT IN COLUMNZ

421 13 a IT+I
'422 20,30,30CI~
1422 0 11C IA-AES(BIG)-AS~Z))2,0

424 ~ 1 4AX a I 

'
C TZST VOR PITOT LEFS THAN TOLEPAUC? (SINGUILAR KATPIX) *

'426 1 (ADS (BIGA)-TOL) 355, 35, 40
4 '17 35 K", aI

.429 '40 11 = 3 + (3 2)
'430 1- - T!IAX J
±431 0011X- 3I

±433 12 ai3 Ii 1 +I . l
'434 SAVI u A(I1)
E935 A(Ii AC2
'4305 A(T2) IMAV

C DIYIDZ SCAOM0 BY LEADING COEFTIC114-

'438 1 5A 7 1 1 V
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'439 (1.11AX) 3 8(J)
1440 9 (J) u SlV!/SZGL

c !ltZIXVAT! NEW¶? VARIABi!

44&1 ?I-)515, 70, 55
4&42 SS 105 u I (J-1)
14143 006e5I ! JT, 13
14144 IXJ 10 +Q XXZ
'14S5V j-1
11146 Do 60 JX J1, I
1447 l132 It 1 (3%X-1) * Xx
14143 W3X 1x32.+ZI
14449 60 h(ILjx) a &(IUJI) (&(I3)*A(JJII)

A45 35 1(12) a S(IX) -(5(J) 0 A(ZXJ))

C flACR SOLU"IO

~&1 70) ly u I

1451 DO 90 J 10 UI
&6514 11 I T-j

1456 Ic q

'45q D('11) 3 5(11) (IA &1 3 (IC)
1459 14a 11- 3
'460 00 IC -Tc -I

'462 01

Cc?! 'TqAG! 083EVt" COD! OEM q 24M YT'!S,AF'tA? APREA- 50070 3!?!S,TflTAL AR'!& A77ZLABLZo

UzAr":0.17!ics 1IUMZ OF naloRss 1), Nonatl Of WASNITGSu C C1' C! T'1ISZT

-41 QUEUE CCN-301 P~)L3M -IkS I C'LASS!? or CUSTOLIEPS. !TI nEAN SEP7ICT ?&T! or

IN1?"T 7&LVY!S OT TI! 01FIVITIRP¶ F01~ !ACE CLASS APE G'IVE~ IN !LIF ?rnLLOWTIC TAAL!

CLASS R V AIt 0 COST tIL111

1 5_1'0 2.00 11

P IND ! A"Zc!s ?cLL0¶I POs &C~IT~IN I

TRIASITbOII P10BA8111TIES
r.

0.~) 1.000000

0. ~ 1. A010000
0.1 irol

0.) 1.000000
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0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

SP 4WD B MATRIZCES rtLOV POP LC"TOW 2

TILANSIXION PVOE IUZLVTZ!S
1.000000 0.0
0.250000 0.750000
0.250000 0.750000
0.250000 1.750000
0.250000 1.730000
0.250000 0.750000
0.250000 0.750000
0.0 0.0

ZX?2CT! REW13DS F'OR TANSTZTONI
4.333333 3.666667 3.000000 2.333334 1.6f66667 1.000000 003333a• 0.0

ACTION 1 AIDMITS cLtSSZS 0

XCTIZO 2 ADMITS CL&ESSS I

R 4WD Q V2CTORS FOLLO% ?OR ACTIZONI I

0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0

040 0.0 0.0 0.0 0.0 0.0 0.0 0.0

R 13lD 0 V!C-.ORS FOLLOW YCS AC'TION 2

P (71)
g.331 C.917 1.750 0.Si3 0.,17 o. 50 SO 0.0.1 0.0

4.333 3,667 3.000 2.333 1,667 1,000 0.331 0.0

RESULTS FOR ITIPADT0O .1 ?Ottow

DECZSZCIN VCTOR

2 2 2 2 2 2 2 1

GQZAN u L4.001

7 V!CTOR

7.!31"10 7.5040, 6.q9 16 5.8535 4.5567 3. 00O' 1.3336 0.1

R1ST1LTS ?OR •"5. ZTON 2 FOLLOW

nECISTON V'!CToE
2 2 2 2 2 ¶ 1 1

4,003

SVICTO!'

",1767 6.9461 6.1905 5.2262 14.1027 2.6fis. 1.1342 0.0

RISTYLTS POP ITIDATION 3 ?OTLOW

DECISZCn TICTO.P

2 2 2 2 2 1 1 1

'



225

Gill 4 .003

7. 176'? 6.RL61 6.190s 5.2262 ~4.0027 2.6685 1.334I2 0.0

POLICY ZTIRA'TION !¶Z1.&1TRD

STUADY STI?'! PI05B3U..ZT!ES
0.6676 0.2225 0.37'42 0*02'47 -*X0092 0.0027 -0.0000 -0.0000

OPTUAL Q VALOIS
4*.3333 3.6667 3M00D 2o3333 1.6667 0.0 0.0 0.0

GAIN RAT! CETC1
( L4.0027

ACCOUNT ryl?: ' 11 11AXIM91I TTI! (3EC) 2~ 0HS C713 (SLtC) I
DATE: 1/'0/7~1 IDEN!: ACTUIAL T111 IlCtUDING 2.'1 SEC SYS"~!' T"!I': 4 .~

USM~ RU! LZINES PHznT"!o.: 731 CAZDS PU'TCnzD: I l

os-21.3 k*ASP-2.T'5G 370/3031 CARIS 173.D, 712 tae
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